Cargando…
Genes Involved in the Evolution of Herbivory by a Leaf-Mining, Drosophilid Fly
Herbivorous insects are among the most successful radiations of life. However, we know little about the processes underpinning the evolution of herbivory. We examined the evolution of herbivory in the fly, Scaptomyza flava, whose larvae are leaf miners on species of Brassicaceae, including the widel...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516228/ https://www.ncbi.nlm.nih.gov/pubmed/22813779 http://dx.doi.org/10.1093/gbe/evs063 |
_version_ | 1782252285439508480 |
---|---|
author | Whiteman, Noah K. Gloss, Andrew D. Sackton, Timothy B. Groen, Simon C. Humphrey, Parris T. Lapoint, Richard T. Sønderby, Ida E. Halkier, Barbara A. Kocks, Christine Ausubel, Frederick M. Pierce, Naomi E. |
author_facet | Whiteman, Noah K. Gloss, Andrew D. Sackton, Timothy B. Groen, Simon C. Humphrey, Parris T. Lapoint, Richard T. Sønderby, Ida E. Halkier, Barbara A. Kocks, Christine Ausubel, Frederick M. Pierce, Naomi E. |
author_sort | Whiteman, Noah K. |
collection | PubMed |
description | Herbivorous insects are among the most successful radiations of life. However, we know little about the processes underpinning the evolution of herbivory. We examined the evolution of herbivory in the fly, Scaptomyza flava, whose larvae are leaf miners on species of Brassicaceae, including the widely studied reference plant, Arabidopsis thaliana (Arabidopsis). Scaptomyza flava is phylogenetically nested within the paraphyletic genus Drosophila, and the whole genome sequences available for 12 species of Drosophila facilitated phylogenetic analysis and assembly of a transcriptome for S. flava. A time-calibrated phylogeny indicated that leaf mining in Scaptomyza evolved between 6 and 16 million years ago. Feeding assays showed that biosynthesis of glucosinolates, the major class of antiherbivore chemical defense compounds in mustard leaves, was upregulated by S. flava larval feeding. The presence of glucosinolates in wild-type (WT) Arabidopsis plants reduced S. flava larval weight gain and increased egg–adult development time relative to flies reared in glucosinolate knockout (GKO) plants. An analysis of gene expression differences in 5-day-old larvae reared on WT versus GKO plants showed a total of 341 transcripts that were differentially regulated by glucosinolate uptake in larval S. flava. Of these, approximately a third corresponded to homologs of Drosophila melanogaster genes associated with starvation, dietary toxin-, heat-, oxidation-, and aging-related stress. The upregulated transcripts exhibited elevated rates of protein evolution compared with unregulated transcripts. The remaining differentially regulated transcripts also contained a higher proportion of novel genes than the unregulated transcripts. Thus, the transition to herbivory in Scaptomyza appears to be coupled with the evolution of novel genes and the co-option of conserved stress-related genes. |
format | Online Article Text |
id | pubmed-3516228 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-35162282012-12-06 Genes Involved in the Evolution of Herbivory by a Leaf-Mining, Drosophilid Fly Whiteman, Noah K. Gloss, Andrew D. Sackton, Timothy B. Groen, Simon C. Humphrey, Parris T. Lapoint, Richard T. Sønderby, Ida E. Halkier, Barbara A. Kocks, Christine Ausubel, Frederick M. Pierce, Naomi E. Genome Biol Evol Research Articles Herbivorous insects are among the most successful radiations of life. However, we know little about the processes underpinning the evolution of herbivory. We examined the evolution of herbivory in the fly, Scaptomyza flava, whose larvae are leaf miners on species of Brassicaceae, including the widely studied reference plant, Arabidopsis thaliana (Arabidopsis). Scaptomyza flava is phylogenetically nested within the paraphyletic genus Drosophila, and the whole genome sequences available for 12 species of Drosophila facilitated phylogenetic analysis and assembly of a transcriptome for S. flava. A time-calibrated phylogeny indicated that leaf mining in Scaptomyza evolved between 6 and 16 million years ago. Feeding assays showed that biosynthesis of glucosinolates, the major class of antiherbivore chemical defense compounds in mustard leaves, was upregulated by S. flava larval feeding. The presence of glucosinolates in wild-type (WT) Arabidopsis plants reduced S. flava larval weight gain and increased egg–adult development time relative to flies reared in glucosinolate knockout (GKO) plants. An analysis of gene expression differences in 5-day-old larvae reared on WT versus GKO plants showed a total of 341 transcripts that were differentially regulated by glucosinolate uptake in larval S. flava. Of these, approximately a third corresponded to homologs of Drosophila melanogaster genes associated with starvation, dietary toxin-, heat-, oxidation-, and aging-related stress. The upregulated transcripts exhibited elevated rates of protein evolution compared with unregulated transcripts. The remaining differentially regulated transcripts also contained a higher proportion of novel genes than the unregulated transcripts. Thus, the transition to herbivory in Scaptomyza appears to be coupled with the evolution of novel genes and the co-option of conserved stress-related genes. Oxford University Press 2012 2012-07-19 /pmc/articles/PMC3516228/ /pubmed/22813779 http://dx.doi.org/10.1093/gbe/evs063 Text en © The Author(s) 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Whiteman, Noah K. Gloss, Andrew D. Sackton, Timothy B. Groen, Simon C. Humphrey, Parris T. Lapoint, Richard T. Sønderby, Ida E. Halkier, Barbara A. Kocks, Christine Ausubel, Frederick M. Pierce, Naomi E. Genes Involved in the Evolution of Herbivory by a Leaf-Mining, Drosophilid Fly |
title | Genes Involved in the Evolution of Herbivory by a Leaf-Mining, Drosophilid
Fly |
title_full | Genes Involved in the Evolution of Herbivory by a Leaf-Mining, Drosophilid
Fly |
title_fullStr | Genes Involved in the Evolution of Herbivory by a Leaf-Mining, Drosophilid
Fly |
title_full_unstemmed | Genes Involved in the Evolution of Herbivory by a Leaf-Mining, Drosophilid
Fly |
title_short | Genes Involved in the Evolution of Herbivory by a Leaf-Mining, Drosophilid
Fly |
title_sort | genes involved in the evolution of herbivory by a leaf-mining, drosophilid
fly |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516228/ https://www.ncbi.nlm.nih.gov/pubmed/22813779 http://dx.doi.org/10.1093/gbe/evs063 |
work_keys_str_mv | AT whitemannoahk genesinvolvedintheevolutionofherbivorybyaleafminingdrosophilidfly AT glossandrewd genesinvolvedintheevolutionofherbivorybyaleafminingdrosophilidfly AT sacktontimothyb genesinvolvedintheevolutionofherbivorybyaleafminingdrosophilidfly AT groensimonc genesinvolvedintheevolutionofherbivorybyaleafminingdrosophilidfly AT humphreyparrist genesinvolvedintheevolutionofherbivorybyaleafminingdrosophilidfly AT lapointrichardt genesinvolvedintheevolutionofherbivorybyaleafminingdrosophilidfly AT sønderbyidae genesinvolvedintheevolutionofherbivorybyaleafminingdrosophilidfly AT halkierbarbaraa genesinvolvedintheevolutionofherbivorybyaleafminingdrosophilidfly AT kockschristine genesinvolvedintheevolutionofherbivorybyaleafminingdrosophilidfly AT ausubelfrederickm genesinvolvedintheevolutionofherbivorybyaleafminingdrosophilidfly AT piercenaomie genesinvolvedintheevolutionofherbivorybyaleafminingdrosophilidfly |