Cargando…
Comparison Between Linear and Non-parametric Regression Models for Genome-Enabled Prediction in Wheat
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, B...
Autores principales: | Pérez-Rodríguez, Paulino, Gianola, Daniel, González-Camacho, Juan Manuel, Crossa, José, Manès, Yann, Dreisigacker, Susanne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516481/ https://www.ncbi.nlm.nih.gov/pubmed/23275882 http://dx.doi.org/10.1534/g3.112.003665 |
Ejemplares similares
-
Genome-enabled prediction using probabilistic neural network classifiers
por: González-Camacho, Juan Manuel, et al.
Publicado: (2016) -
Multi-trait genomic-enabled prediction enhances accuracy in multi-year wheat breeding trials
por: Montesinos-López, Abelardo, et al.
Publicado: (2021) -
Results from rapid-cycle recurrent genomic selection in spring bread wheat
por: Dreisigacker, Susanne, et al.
Publicado: (2023) -
Bayesian Genomic-Enabled Prediction as an Inverse Problem
por: Cuevas, Jaime, et al.
Publicado: (2014) -
Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat
por: Juliana, Philomin, et al.
Publicado: (2018)