Cargando…

Assessing the Genome-Wide Effect of Promoter Region Tandem Repeat Natural Variation on Gene Expression

Copy number polymorphisms of nucleotide tandem repeat (TR) regions, such as microsatellites and minisatellites, are mutationally reversible and highly abundant in eukaryotic genomes. Studies linking TR polymorphism to phenotypic variation have led some to suggest that TR variation modulates and majo...

Descripción completa

Detalles Bibliográficos
Autores principales: Elmore, Martha H., Gibbons, John G., Rokas, Antonis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516485/
https://www.ncbi.nlm.nih.gov/pubmed/23275886
http://dx.doi.org/10.1534/g3.112.004663
_version_ 1782252309375352832
author Elmore, Martha H.
Gibbons, John G.
Rokas, Antonis
author_facet Elmore, Martha H.
Gibbons, John G.
Rokas, Antonis
author_sort Elmore, Martha H.
collection PubMed
description Copy number polymorphisms of nucleotide tandem repeat (TR) regions, such as microsatellites and minisatellites, are mutationally reversible and highly abundant in eukaryotic genomes. Studies linking TR polymorphism to phenotypic variation have led some to suggest that TR variation modulates and majorly contributes to phenotypic variation; however, studies in which the authors assess the genome-wide impact of TR variation on phenotype are lacking. To address this question, we quantified relationships between polymorphism levels in 143 genome-wide promoter region TRs across 16 isolates of the filamentous fungus Aspergillus flavus and its ecotype Aspergillus oryzae with expression levels of their downstream genes. We found that only 4.3% of relationships tested were significant; these findings were consistent with models in which TRs act as “tuning,” “volume,” or “optimality” “knobs” of phenotype but not with “switch” models. Furthermore, the promoter regions of differentially expressed genes between A. oryzae and A. flavus did not show TR enrichment, suggesting that genome-wide differences in molecular phenotype between the two species are not significantly associated with TRs. Although in some cases TR polymorphisms do contribute to transcript abundance variation, these results argue that at least in this case, TRs might not be major modulators of variation in phenotype.
format Online
Article
Text
id pubmed-3516485
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Genetics Society of America
record_format MEDLINE/PubMed
spelling pubmed-35164852012-12-28 Assessing the Genome-Wide Effect of Promoter Region Tandem Repeat Natural Variation on Gene Expression Elmore, Martha H. Gibbons, John G. Rokas, Antonis G3 (Bethesda) Investigations Copy number polymorphisms of nucleotide tandem repeat (TR) regions, such as microsatellites and minisatellites, are mutationally reversible and highly abundant in eukaryotic genomes. Studies linking TR polymorphism to phenotypic variation have led some to suggest that TR variation modulates and majorly contributes to phenotypic variation; however, studies in which the authors assess the genome-wide impact of TR variation on phenotype are lacking. To address this question, we quantified relationships between polymorphism levels in 143 genome-wide promoter region TRs across 16 isolates of the filamentous fungus Aspergillus flavus and its ecotype Aspergillus oryzae with expression levels of their downstream genes. We found that only 4.3% of relationships tested were significant; these findings were consistent with models in which TRs act as “tuning,” “volume,” or “optimality” “knobs” of phenotype but not with “switch” models. Furthermore, the promoter regions of differentially expressed genes between A. oryzae and A. flavus did not show TR enrichment, suggesting that genome-wide differences in molecular phenotype between the two species are not significantly associated with TRs. Although in some cases TR polymorphisms do contribute to transcript abundance variation, these results argue that at least in this case, TRs might not be major modulators of variation in phenotype. Genetics Society of America 2012-12-01 /pmc/articles/PMC3516485/ /pubmed/23275886 http://dx.doi.org/10.1534/g3.112.004663 Text en Copyright © 2012 Elmore et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Investigations
Elmore, Martha H.
Gibbons, John G.
Rokas, Antonis
Assessing the Genome-Wide Effect of Promoter Region Tandem Repeat Natural Variation on Gene Expression
title Assessing the Genome-Wide Effect of Promoter Region Tandem Repeat Natural Variation on Gene Expression
title_full Assessing the Genome-Wide Effect of Promoter Region Tandem Repeat Natural Variation on Gene Expression
title_fullStr Assessing the Genome-Wide Effect of Promoter Region Tandem Repeat Natural Variation on Gene Expression
title_full_unstemmed Assessing the Genome-Wide Effect of Promoter Region Tandem Repeat Natural Variation on Gene Expression
title_short Assessing the Genome-Wide Effect of Promoter Region Tandem Repeat Natural Variation on Gene Expression
title_sort assessing the genome-wide effect of promoter region tandem repeat natural variation on gene expression
topic Investigations
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516485/
https://www.ncbi.nlm.nih.gov/pubmed/23275886
http://dx.doi.org/10.1534/g3.112.004663
work_keys_str_mv AT elmoremarthah assessingthegenomewideeffectofpromoterregiontandemrepeatnaturalvariationongeneexpression
AT gibbonsjohng assessingthegenomewideeffectofpromoterregiontandemrepeatnaturalvariationongeneexpression
AT rokasantonis assessingthegenomewideeffectofpromoterregiontandemrepeatnaturalvariationongeneexpression