Cargando…

STAT1 Mediates Oroxylin A Inhibition of iNOS and Pro-Inflammatory Cytokines Expression in Microglial BV-2 Cells

Microglia-mediated inflammation is implicated in pathogenesis of neurodegenerative diseases. Oroxylin A, a flavonoid isolated from Scutellariae baicalensis, has been shown to ameliorate microglia activation-mediated neurodegeneration in vivo. The molecular mechanism underlying the inhibitory effects...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Po-Wen, Chen, Mei-Fang, Tsai, Andy Po-Yi, Lee, Tony J. F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516518/
https://www.ncbi.nlm.nih.gov/pubmed/23236370
http://dx.doi.org/10.1371/journal.pone.0050363
Descripción
Sumario:Microglia-mediated inflammation is implicated in pathogenesis of neurodegenerative diseases. Oroxylin A, a flavonoid isolated from Scutellariae baicalensis, has been shown to ameliorate microglia activation-mediated neurodegeneration in vivo. The molecular mechanism underlying the inhibitory effects of oroxylin A on microglia activation, however, remains unknown. In the present study, effects of oroxylin A co-treated with lipopolysaccharide (LPS, 100 ng/ml) on LPS-induced activation of cultured microglial BV-2 cells were examined. Nitric oxide (NO) production was determined by Greiss method. Expression of inducible nitric oxide synthase (iNOS), interleukin (IL)-1β and IL-6 was assessed using real-time RT-PCR or Western blot analysis. Furthermore, activation of the nuclear factor κB (NFκB) and the signal transducer and activator of transcription 1 (STAT1) was examined by Western blot analysis and transcription factor DNA-binding activity assay. Our results indicated that oroxylin A (10–100 µM) in a concentration-dependent manner inhibited LPS-induced NO production via blocking iNOS expression at both mRNA and protein levels without affecting the degradation rate of iNOS mRNA. Moreover, oroxylin A significantly attenuated LPS-induced late expression (20 hours after LPS challenge) of IL-1β and IL-6. Furthermore, oroxylin A significantly suppressed LPS-induced JAK2-mediated STAT1 phosphorylation without affecting LPS-induced NFκB-p65 nuclear translocation or NFκB-p65 DNA-binding activity. This is consistent with the finding that AG490, a specific JAK2 inhibitor, significantly inhibited LPS-induced STAT1 phosphorylation with almost completely diminished iNOS expression. These results suggest that oroxylin A, via suppressing STAT1 phosphorylation, inhibits LPS-induced expression of pro-inflammatory genes in BV-2 microglial cells.