Cargando…
QTL Analysis of Na(+) and K(+) Concentrations in Roots and Shoots under Different Levels of NaCl Stress in Rice (Oryza sativa L.)
The key to plant survival under NaCl salt stress is maintaining a low Na(+) level or Na(+)/K(+) ratio in the cells. A population of recombinant inbred lines (RILs, F(2∶9)) derived from a cross between the salt-tolerant japonica rice variety Jiucaiqing and the salt-sensitive indica variety IR26, was...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516561/ https://www.ncbi.nlm.nih.gov/pubmed/23236455 http://dx.doi.org/10.1371/journal.pone.0051202 |
_version_ | 1782252326376964096 |
---|---|
author | Wang, Zhoufei Chen, Zhiwei Cheng, Jinping Lai, Yanyan Wang, Jianfei Bao, Yongmei Huang, Ji Zhang, Hongsheng |
author_facet | Wang, Zhoufei Chen, Zhiwei Cheng, Jinping Lai, Yanyan Wang, Jianfei Bao, Yongmei Huang, Ji Zhang, Hongsheng |
author_sort | Wang, Zhoufei |
collection | PubMed |
description | The key to plant survival under NaCl salt stress is maintaining a low Na(+) level or Na(+)/K(+) ratio in the cells. A population of recombinant inbred lines (RILs, F(2∶9)) derived from a cross between the salt-tolerant japonica rice variety Jiucaiqing and the salt-sensitive indica variety IR26, was used to determine Na(+) and K(+) concentrations in the roots and shoots under three different NaCl stress conditions (0, 100 and 120 mM NaCl). A total of nine additive QTLs were identified by QTL Cartographer program using single-environment phenotypic values, whereas eight additive QTLs were identified by QTL IciMapping program. Among these additive QTLs, five were identified by both programs. Epistatic QTLs and QTL-by-environment interactions were detected by QTLNetwork program in the joint analyses of multi-environment phenotypic values, and one additive QTL and nine epistatic QTLs were identified. There were three epistatic QTLs identified for Na(+) in roots (RNC), three additive QTLs and two epistatic QTLs identified for Na(+) in shoots (SNC), four additive QTLs identified for K(+) in roots (RKC), four additive QTLs and three epistatic QTLs identified for K(+) in shoots (SKC) and one additive QTL and one epistatic QTL for salt tolerance rating (STR). The phenotypic variation explained by each additive, epistatic QTL and QTL×environment interaction ranged from 8.5 to 18.9%, 0.5 to 5.3% and 0.7 to 7.5%, respectively. By comparing the chromosomal positions of these additive QTLs with those previously identified, five additive QTLs, qSNC9, qSKC1, qSKC9, qRKC4 and qSTR7, might represent novel salt tolerance loci. The identification of salt tolerance in selected RILs showed that a major QTL qSNC11 played a significant role in rice salt tolerance, and could be used to improve salt tolerance of commercial rice varieties with marker-assisted selection (MAS) approach. |
format | Online Article Text |
id | pubmed-3516561 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35165612012-12-12 QTL Analysis of Na(+) and K(+) Concentrations in Roots and Shoots under Different Levels of NaCl Stress in Rice (Oryza sativa L.) Wang, Zhoufei Chen, Zhiwei Cheng, Jinping Lai, Yanyan Wang, Jianfei Bao, Yongmei Huang, Ji Zhang, Hongsheng PLoS One Research Article The key to plant survival under NaCl salt stress is maintaining a low Na(+) level or Na(+)/K(+) ratio in the cells. A population of recombinant inbred lines (RILs, F(2∶9)) derived from a cross between the salt-tolerant japonica rice variety Jiucaiqing and the salt-sensitive indica variety IR26, was used to determine Na(+) and K(+) concentrations in the roots and shoots under three different NaCl stress conditions (0, 100 and 120 mM NaCl). A total of nine additive QTLs were identified by QTL Cartographer program using single-environment phenotypic values, whereas eight additive QTLs were identified by QTL IciMapping program. Among these additive QTLs, five were identified by both programs. Epistatic QTLs and QTL-by-environment interactions were detected by QTLNetwork program in the joint analyses of multi-environment phenotypic values, and one additive QTL and nine epistatic QTLs were identified. There were three epistatic QTLs identified for Na(+) in roots (RNC), three additive QTLs and two epistatic QTLs identified for Na(+) in shoots (SNC), four additive QTLs identified for K(+) in roots (RKC), four additive QTLs and three epistatic QTLs identified for K(+) in shoots (SKC) and one additive QTL and one epistatic QTL for salt tolerance rating (STR). The phenotypic variation explained by each additive, epistatic QTL and QTL×environment interaction ranged from 8.5 to 18.9%, 0.5 to 5.3% and 0.7 to 7.5%, respectively. By comparing the chromosomal positions of these additive QTLs with those previously identified, five additive QTLs, qSNC9, qSKC1, qSKC9, qRKC4 and qSTR7, might represent novel salt tolerance loci. The identification of salt tolerance in selected RILs showed that a major QTL qSNC11 played a significant role in rice salt tolerance, and could be used to improve salt tolerance of commercial rice varieties with marker-assisted selection (MAS) approach. Public Library of Science 2012-12-06 /pmc/articles/PMC3516561/ /pubmed/23236455 http://dx.doi.org/10.1371/journal.pone.0051202 Text en © 2012 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Wang, Zhoufei Chen, Zhiwei Cheng, Jinping Lai, Yanyan Wang, Jianfei Bao, Yongmei Huang, Ji Zhang, Hongsheng QTL Analysis of Na(+) and K(+) Concentrations in Roots and Shoots under Different Levels of NaCl Stress in Rice (Oryza sativa L.) |
title | QTL Analysis of Na(+) and K(+) Concentrations in Roots and Shoots under Different Levels of NaCl Stress in Rice (Oryza sativa L.) |
title_full | QTL Analysis of Na(+) and K(+) Concentrations in Roots and Shoots under Different Levels of NaCl Stress in Rice (Oryza sativa L.) |
title_fullStr | QTL Analysis of Na(+) and K(+) Concentrations in Roots and Shoots under Different Levels of NaCl Stress in Rice (Oryza sativa L.) |
title_full_unstemmed | QTL Analysis of Na(+) and K(+) Concentrations in Roots and Shoots under Different Levels of NaCl Stress in Rice (Oryza sativa L.) |
title_short | QTL Analysis of Na(+) and K(+) Concentrations in Roots and Shoots under Different Levels of NaCl Stress in Rice (Oryza sativa L.) |
title_sort | qtl analysis of na(+) and k(+) concentrations in roots and shoots under different levels of nacl stress in rice (oryza sativa l.) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516561/ https://www.ncbi.nlm.nih.gov/pubmed/23236455 http://dx.doi.org/10.1371/journal.pone.0051202 |
work_keys_str_mv | AT wangzhoufei qtlanalysisofnaandkconcentrationsinrootsandshootsunderdifferentlevelsofnaclstressinriceoryzasatival AT chenzhiwei qtlanalysisofnaandkconcentrationsinrootsandshootsunderdifferentlevelsofnaclstressinriceoryzasatival AT chengjinping qtlanalysisofnaandkconcentrationsinrootsandshootsunderdifferentlevelsofnaclstressinriceoryzasatival AT laiyanyan qtlanalysisofnaandkconcentrationsinrootsandshootsunderdifferentlevelsofnaclstressinriceoryzasatival AT wangjianfei qtlanalysisofnaandkconcentrationsinrootsandshootsunderdifferentlevelsofnaclstressinriceoryzasatival AT baoyongmei qtlanalysisofnaandkconcentrationsinrootsandshootsunderdifferentlevelsofnaclstressinriceoryzasatival AT huangji qtlanalysisofnaandkconcentrationsinrootsandshootsunderdifferentlevelsofnaclstressinriceoryzasatival AT zhanghongsheng qtlanalysisofnaandkconcentrationsinrootsandshootsunderdifferentlevelsofnaclstressinriceoryzasatival |