Cargando…
Analysis of gene alterations of mitochondrial DNA D-loop regions to determine breast cancer clonality
BACKGROUND: It has been a challenge to determine breast cancer clonality accurately. The aim of the present study was to assess methods using formalin-fixed paraffin-embedded (FFPE) tissue to differentiate new primary tumours from true recurrences that are associated with poorer prognoses and often...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516690/ https://www.ncbi.nlm.nih.gov/pubmed/23169290 http://dx.doi.org/10.1038/bjc.2012.505 |
Sumario: | BACKGROUND: It has been a challenge to determine breast cancer clonality accurately. The aim of the present study was to assess methods using formalin-fixed paraffin-embedded (FFPE) tissue to differentiate new primary tumours from true recurrences that are associated with poorer prognoses and often require more aggressive treatment. METHODS: We investigated the novel method of analysing gene alterations of mitochondrial DNA D-loop region (GAMDDL) and compared it with the conventional method of analysing the X-chromosome-linked human androgen receptor (HUMARA). The FFPE sections of primary and secondary breast cancers, the non-neoplastic mammary gland, and lymph nodes were examined. RESULTS: Informative rates for HUMARA, GAMDDL, and combined analyses were 42.1%, 76.9%, and 89.5%, respectively. All of the 10 contralateral breast cancers were determined to be non-clonal. In contrast, 3 out of 8 (37.5%) of the ipsilateral secondary tumours shared a clonal origin with the primary tumour and were classified as true recurrences, whereas 4 out of 8 (50%) were classified as new primary tumours. CONCLUSION: GAMDDL analysis represents a novel and useful molecular method for examining the precise cell lineages of primary and secondary tumours, and was more accurate than HUMARA in determining clonality. |
---|