Cargando…

Autoreactive HSP60 epitope-specific T-cells in early human atherosclerotic lesions

Atherosclerosis is a multifactorial chronic inflammatory disease characterized by the presence of T-cells, macrophages, and dendritic cells in the arterial intima. Classical risk factors lead to over-expression of stress proteins, especially heat shock protein 60 (HSP60). HSP60 on the surface of art...

Descripción completa

Detalles Bibliográficos
Autores principales: Almanzar, Giovanni, Öllinger, Robert, Leuenberger, Julianna, Onestingel, Elisabeth, Rantner, Barbara, Zehm, Sarah, Cardini, Benno, van der Zee, Ruurd, Grundtman, Cecilia, Wick, Georg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516706/
https://www.ncbi.nlm.nih.gov/pubmed/22901435
http://dx.doi.org/10.1016/j.jaut.2012.07.006
Descripción
Sumario:Atherosclerosis is a multifactorial chronic inflammatory disease characterized by the presence of T-cells, macrophages, and dendritic cells in the arterial intima. Classical risk factors lead to over-expression of stress proteins, especially heat shock protein 60 (HSP60). HSP60 on the surface of arterial endothelial cells (ECs) then becomes a target for pre-existing adaptive anti-HSP60 immunity resulting in infiltration of the intima by mononuclear cells. In the present study, T-cells derived from early, clinically still inapparent human atherosclerotic lesions were analyzed phenotypically and for their reactivity against HSP60 and HSP60-derived peptides. HSP60 was detected in ECs and CD40- and HLA Class II-positive cells within the intima. Effector memory CD4(+) T-cells producing high amounts of interferon-γ and low levels of interleukin-4 were the dominant subpopulation. T-cells derived from late lesions displayed a more restricted T-cell receptor repertoire to HSP60-derived peptides than those isolated from early lesions. Increased levels of soluble HSP60 and circulating anti-human HSP60 autoantibodies were found in donors with late but not early lesions. This is the first functional study of T-cells derived from early human atherosclerotic lesions that supports the previously proposed concept that HSP60-reactive T-cells initiate atherosclerosis by recognition of atherogenic HSP60 epitopes.