Cargando…

Molecular evolution of the polyamine oxidase gene family in Metazoa

BACKGROUND: Polyamine oxidase enzymes catalyze the oxidation of polyamines and acetylpolyamines. Since polyamines are basic regulators of cell growth and proliferation, their homeostasis is crucial for cell life. Members of the polyamine oxidase gene family have been identified in a wide variety of...

Descripción completa

Detalles Bibliográficos
Autores principales: Polticelli, Fabio, Salvi, Daniele, Mariottini, Paolo, Amendola, Roberto, Cervelli, Manuela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517346/
https://www.ncbi.nlm.nih.gov/pubmed/22716069
http://dx.doi.org/10.1186/1471-2148-12-90
_version_ 1782252389713051648
author Polticelli, Fabio
Salvi, Daniele
Mariottini, Paolo
Amendola, Roberto
Cervelli, Manuela
author_facet Polticelli, Fabio
Salvi, Daniele
Mariottini, Paolo
Amendola, Roberto
Cervelli, Manuela
author_sort Polticelli, Fabio
collection PubMed
description BACKGROUND: Polyamine oxidase enzymes catalyze the oxidation of polyamines and acetylpolyamines. Since polyamines are basic regulators of cell growth and proliferation, their homeostasis is crucial for cell life. Members of the polyamine oxidase gene family have been identified in a wide variety of animals, including vertebrates, arthropodes, nematodes, placozoa, as well as in plants and fungi. Polyamine oxidases (PAOs) from yeast can oxidize spermine, N(1)-acetylspermine, and N(1)-acetylspermidine, however, in vertebrates two different enzymes, namely spermine oxidase (SMO) and acetylpolyamine oxidase (APAO), specifically catalyze the oxidation of spermine, and N(1)-acetylspermine/N(1)-acetylspermidine, respectively. Little is known about the molecular evolutionary history of these enzymes. However, since the yeast PAO is able to catalyze the oxidation of both acetylated and non acetylated polyamines, and in vertebrates these functions are addressed by two specialized polyamine oxidase subfamilies (APAO and SMO), it can be hypothesized an ancestral reference for the former enzyme from which the latter would have been derived. RESULTS: We analysed 36 SMO, 26 APAO, and 14 PAO homologue protein sequences from 54 taxa including various vertebrates and invertebrates. The analysis of the full-length sequences and the principal domains of vertebrate and invertebrate PAOs yielded consensus primary protein sequences for vertebrate SMOs and APAOs, and invertebrate PAOs. This analysis, coupled to molecular modeling techniques, also unveiled sequence regions that confer specific structural and functional properties, including substrate specificity, by the different PAO subfamilies. Molecular phylogenetic trees revealed a basal position of all the invertebrates PAO enzymes relative to vertebrate SMOs and APAOs. PAOs from insects constitute a monophyletic clade. Two PAO variants sampled in the amphioxus are basal to the dichotomy between two well supported monophyletic clades including, respectively, all the SMOs and APAOs from vertebrates. The two vertebrate monophyletic clades clustered strictly mirroring the organismal phylogeny of fishes, amphibians, reptiles, birds, and mammals. Evidences from comparative genomic analysis, structural evolution and functional divergence in a phylogenetic framework across Metazoa suggested an evolutionary scenario where the ancestor PAO coding sequence, present in invertebrates as an orthologous gene, has been duplicated in the vertebrate branch to originate the paralogous SMO and APAO genes. A further genome evolution event concerns the SMO gene of placental, but not marsupial and monotremate, mammals which increased its functional variation following an alternative splicing (AS) mechanism. CONCLUSIONS: In this study the explicit integration in a phylogenomic framework of phylogenetic tree construction, structure prediction, and biochemical function data/prediction, allowed inferring the molecular evolutionary history of the PAO gene family and to disambiguate paralogous genes related by duplication event (SMO and APAO) and orthologous genes related by speciation events (PAOs, SMOs/APAOs). Further, while in vertebrates experimental data corroborate SMO and APAO molecular function predictions, in invertebrates the finding of a supported phylogenetic clusters of insect PAOs and the co-occurrence of two PAO variants in the amphioxus urgently claim the need for future structure-function studies.
format Online
Article
Text
id pubmed-3517346
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35173462012-12-08 Molecular evolution of the polyamine oxidase gene family in Metazoa Polticelli, Fabio Salvi, Daniele Mariottini, Paolo Amendola, Roberto Cervelli, Manuela BMC Evol Biol Research Article BACKGROUND: Polyamine oxidase enzymes catalyze the oxidation of polyamines and acetylpolyamines. Since polyamines are basic regulators of cell growth and proliferation, their homeostasis is crucial for cell life. Members of the polyamine oxidase gene family have been identified in a wide variety of animals, including vertebrates, arthropodes, nematodes, placozoa, as well as in plants and fungi. Polyamine oxidases (PAOs) from yeast can oxidize spermine, N(1)-acetylspermine, and N(1)-acetylspermidine, however, in vertebrates two different enzymes, namely spermine oxidase (SMO) and acetylpolyamine oxidase (APAO), specifically catalyze the oxidation of spermine, and N(1)-acetylspermine/N(1)-acetylspermidine, respectively. Little is known about the molecular evolutionary history of these enzymes. However, since the yeast PAO is able to catalyze the oxidation of both acetylated and non acetylated polyamines, and in vertebrates these functions are addressed by two specialized polyamine oxidase subfamilies (APAO and SMO), it can be hypothesized an ancestral reference for the former enzyme from which the latter would have been derived. RESULTS: We analysed 36 SMO, 26 APAO, and 14 PAO homologue protein sequences from 54 taxa including various vertebrates and invertebrates. The analysis of the full-length sequences and the principal domains of vertebrate and invertebrate PAOs yielded consensus primary protein sequences for vertebrate SMOs and APAOs, and invertebrate PAOs. This analysis, coupled to molecular modeling techniques, also unveiled sequence regions that confer specific structural and functional properties, including substrate specificity, by the different PAO subfamilies. Molecular phylogenetic trees revealed a basal position of all the invertebrates PAO enzymes relative to vertebrate SMOs and APAOs. PAOs from insects constitute a monophyletic clade. Two PAO variants sampled in the amphioxus are basal to the dichotomy between two well supported monophyletic clades including, respectively, all the SMOs and APAOs from vertebrates. The two vertebrate monophyletic clades clustered strictly mirroring the organismal phylogeny of fishes, amphibians, reptiles, birds, and mammals. Evidences from comparative genomic analysis, structural evolution and functional divergence in a phylogenetic framework across Metazoa suggested an evolutionary scenario where the ancestor PAO coding sequence, present in invertebrates as an orthologous gene, has been duplicated in the vertebrate branch to originate the paralogous SMO and APAO genes. A further genome evolution event concerns the SMO gene of placental, but not marsupial and monotremate, mammals which increased its functional variation following an alternative splicing (AS) mechanism. CONCLUSIONS: In this study the explicit integration in a phylogenomic framework of phylogenetic tree construction, structure prediction, and biochemical function data/prediction, allowed inferring the molecular evolutionary history of the PAO gene family and to disambiguate paralogous genes related by duplication event (SMO and APAO) and orthologous genes related by speciation events (PAOs, SMOs/APAOs). Further, while in vertebrates experimental data corroborate SMO and APAO molecular function predictions, in invertebrates the finding of a supported phylogenetic clusters of insect PAOs and the co-occurrence of two PAO variants in the amphioxus urgently claim the need for future structure-function studies. BioMed Central 2012-06-20 /pmc/articles/PMC3517346/ /pubmed/22716069 http://dx.doi.org/10.1186/1471-2148-12-90 Text en Copyright ©2012 Polticelli et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Polticelli, Fabio
Salvi, Daniele
Mariottini, Paolo
Amendola, Roberto
Cervelli, Manuela
Molecular evolution of the polyamine oxidase gene family in Metazoa
title Molecular evolution of the polyamine oxidase gene family in Metazoa
title_full Molecular evolution of the polyamine oxidase gene family in Metazoa
title_fullStr Molecular evolution of the polyamine oxidase gene family in Metazoa
title_full_unstemmed Molecular evolution of the polyamine oxidase gene family in Metazoa
title_short Molecular evolution of the polyamine oxidase gene family in Metazoa
title_sort molecular evolution of the polyamine oxidase gene family in metazoa
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517346/
https://www.ncbi.nlm.nih.gov/pubmed/22716069
http://dx.doi.org/10.1186/1471-2148-12-90
work_keys_str_mv AT polticellifabio molecularevolutionofthepolyamineoxidasegenefamilyinmetazoa
AT salvidaniele molecularevolutionofthepolyamineoxidasegenefamilyinmetazoa
AT mariottinipaolo molecularevolutionofthepolyamineoxidasegenefamilyinmetazoa
AT amendolaroberto molecularevolutionofthepolyamineoxidasegenefamilyinmetazoa
AT cervellimanuela molecularevolutionofthepolyamineoxidasegenefamilyinmetazoa