Cargando…

Analyzing Illumina Gene Expression Microarray Data from Different Tissues: Methodological Aspects of Data Analysis in the MetaXpress Consortium

Microarray profiling of gene expression is widely applied in molecular biology and functional genomics. Experimental and technical variations make meta-analysis of different studies challenging. In a total of 3358 samples, all from German population-based cohorts, we investigated the effect of data...

Descripción completa

Detalles Bibliográficos
Autores principales: Schurmann, Claudia, Heim, Katharina, Schillert, Arne, Blankenberg, Stefan, Carstensen, Maren, Dörr, Marcus, Endlich, Karlhans, Felix, Stephan B., Gieger, Christian, Grallert, Harald, Herder, Christian, Hoffmann, Wolfgang, Homuth, Georg, Illig, Thomas, Kruppa, Jochen, Meitinger, Thomas, Müller, Christian, Nauck, Matthias, Peters, Annette, Rettig, Rainer, Roden, Michael, Strauch, Konstantin, Völker, Uwe, Völzke, Henry, Wahl, Simone, Wallaschofski, Henri, Wild, Philipp S., Zeller, Tanja, Teumer, Alexander, Prokisch, Holger, Ziegler, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517598/
https://www.ncbi.nlm.nih.gov/pubmed/23236413
http://dx.doi.org/10.1371/journal.pone.0050938
_version_ 1782252453601738752
author Schurmann, Claudia
Heim, Katharina
Schillert, Arne
Blankenberg, Stefan
Carstensen, Maren
Dörr, Marcus
Endlich, Karlhans
Felix, Stephan B.
Gieger, Christian
Grallert, Harald
Herder, Christian
Hoffmann, Wolfgang
Homuth, Georg
Illig, Thomas
Kruppa, Jochen
Meitinger, Thomas
Müller, Christian
Nauck, Matthias
Peters, Annette
Rettig, Rainer
Roden, Michael
Strauch, Konstantin
Völker, Uwe
Völzke, Henry
Wahl, Simone
Wallaschofski, Henri
Wild, Philipp S.
Zeller, Tanja
Teumer, Alexander
Prokisch, Holger
Ziegler, Andreas
author_facet Schurmann, Claudia
Heim, Katharina
Schillert, Arne
Blankenberg, Stefan
Carstensen, Maren
Dörr, Marcus
Endlich, Karlhans
Felix, Stephan B.
Gieger, Christian
Grallert, Harald
Herder, Christian
Hoffmann, Wolfgang
Homuth, Georg
Illig, Thomas
Kruppa, Jochen
Meitinger, Thomas
Müller, Christian
Nauck, Matthias
Peters, Annette
Rettig, Rainer
Roden, Michael
Strauch, Konstantin
Völker, Uwe
Völzke, Henry
Wahl, Simone
Wallaschofski, Henri
Wild, Philipp S.
Zeller, Tanja
Teumer, Alexander
Prokisch, Holger
Ziegler, Andreas
author_sort Schurmann, Claudia
collection PubMed
description Microarray profiling of gene expression is widely applied in molecular biology and functional genomics. Experimental and technical variations make meta-analysis of different studies challenging. In a total of 3358 samples, all from German population-based cohorts, we investigated the effect of data preprocessing and the variability due to sample processing in whole blood cell and blood monocyte gene expression data, measured on the Illumina HumanHT-12 v3 BeadChip array. Gene expression signal intensities were similar after applying the log(2) or the variance-stabilizing transformation. In all cohorts, the first principal component (PC) explained more than 95% of the total variation. Technical factors substantially influenced signal intensity values, especially the Illumina chip assignment (33–48% of the variance), the RNA amplification batch (12–24%), the RNA isolation batch (16%), and the sample storage time, in particular the time between blood donation and RNA isolation for the whole blood cell samples (2–3%), and the time between RNA isolation and amplification for the monocyte samples (2%). White blood cell composition parameters were the strongest biological factors influencing the expression signal intensities in the whole blood cell samples (3%), followed by sex (1–2%) in both sample types. Known single nucleotide polymorphisms (SNPs) were located in 38% of the analyzed probe sequences and 4% of them included common SNPs (minor allele frequency >5%). Out of the tested SNPs, 1.4% significantly modified the probe-specific expression signals (Bonferroni corrected p-value<0.05), but in almost half of these events the signal intensities were even increased despite the occurrence of the mismatch. Thus, the vast majority of SNPs within probes had no significant effect on hybridization efficiency. In summary, adjustment for a few selected technical factors greatly improved reliability of gene expression analyses. Such adjustments are particularly required for meta-analyses.
format Online
Article
Text
id pubmed-3517598
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35175982012-12-12 Analyzing Illumina Gene Expression Microarray Data from Different Tissues: Methodological Aspects of Data Analysis in the MetaXpress Consortium Schurmann, Claudia Heim, Katharina Schillert, Arne Blankenberg, Stefan Carstensen, Maren Dörr, Marcus Endlich, Karlhans Felix, Stephan B. Gieger, Christian Grallert, Harald Herder, Christian Hoffmann, Wolfgang Homuth, Georg Illig, Thomas Kruppa, Jochen Meitinger, Thomas Müller, Christian Nauck, Matthias Peters, Annette Rettig, Rainer Roden, Michael Strauch, Konstantin Völker, Uwe Völzke, Henry Wahl, Simone Wallaschofski, Henri Wild, Philipp S. Zeller, Tanja Teumer, Alexander Prokisch, Holger Ziegler, Andreas PLoS One Research Article Microarray profiling of gene expression is widely applied in molecular biology and functional genomics. Experimental and technical variations make meta-analysis of different studies challenging. In a total of 3358 samples, all from German population-based cohorts, we investigated the effect of data preprocessing and the variability due to sample processing in whole blood cell and blood monocyte gene expression data, measured on the Illumina HumanHT-12 v3 BeadChip array. Gene expression signal intensities were similar after applying the log(2) or the variance-stabilizing transformation. In all cohorts, the first principal component (PC) explained more than 95% of the total variation. Technical factors substantially influenced signal intensity values, especially the Illumina chip assignment (33–48% of the variance), the RNA amplification batch (12–24%), the RNA isolation batch (16%), and the sample storage time, in particular the time between blood donation and RNA isolation for the whole blood cell samples (2–3%), and the time between RNA isolation and amplification for the monocyte samples (2%). White blood cell composition parameters were the strongest biological factors influencing the expression signal intensities in the whole blood cell samples (3%), followed by sex (1–2%) in both sample types. Known single nucleotide polymorphisms (SNPs) were located in 38% of the analyzed probe sequences and 4% of them included common SNPs (minor allele frequency >5%). Out of the tested SNPs, 1.4% significantly modified the probe-specific expression signals (Bonferroni corrected p-value<0.05), but in almost half of these events the signal intensities were even increased despite the occurrence of the mismatch. Thus, the vast majority of SNPs within probes had no significant effect on hybridization efficiency. In summary, adjustment for a few selected technical factors greatly improved reliability of gene expression analyses. Such adjustments are particularly required for meta-analyses. Public Library of Science 2012-12-07 /pmc/articles/PMC3517598/ /pubmed/23236413 http://dx.doi.org/10.1371/journal.pone.0050938 Text en © 2012 Schurmann et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Schurmann, Claudia
Heim, Katharina
Schillert, Arne
Blankenberg, Stefan
Carstensen, Maren
Dörr, Marcus
Endlich, Karlhans
Felix, Stephan B.
Gieger, Christian
Grallert, Harald
Herder, Christian
Hoffmann, Wolfgang
Homuth, Georg
Illig, Thomas
Kruppa, Jochen
Meitinger, Thomas
Müller, Christian
Nauck, Matthias
Peters, Annette
Rettig, Rainer
Roden, Michael
Strauch, Konstantin
Völker, Uwe
Völzke, Henry
Wahl, Simone
Wallaschofski, Henri
Wild, Philipp S.
Zeller, Tanja
Teumer, Alexander
Prokisch, Holger
Ziegler, Andreas
Analyzing Illumina Gene Expression Microarray Data from Different Tissues: Methodological Aspects of Data Analysis in the MetaXpress Consortium
title Analyzing Illumina Gene Expression Microarray Data from Different Tissues: Methodological Aspects of Data Analysis in the MetaXpress Consortium
title_full Analyzing Illumina Gene Expression Microarray Data from Different Tissues: Methodological Aspects of Data Analysis in the MetaXpress Consortium
title_fullStr Analyzing Illumina Gene Expression Microarray Data from Different Tissues: Methodological Aspects of Data Analysis in the MetaXpress Consortium
title_full_unstemmed Analyzing Illumina Gene Expression Microarray Data from Different Tissues: Methodological Aspects of Data Analysis in the MetaXpress Consortium
title_short Analyzing Illumina Gene Expression Microarray Data from Different Tissues: Methodological Aspects of Data Analysis in the MetaXpress Consortium
title_sort analyzing illumina gene expression microarray data from different tissues: methodological aspects of data analysis in the metaxpress consortium
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517598/
https://www.ncbi.nlm.nih.gov/pubmed/23236413
http://dx.doi.org/10.1371/journal.pone.0050938
work_keys_str_mv AT schurmannclaudia analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT heimkatharina analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT schillertarne analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT blankenbergstefan analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT carstensenmaren analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT dorrmarcus analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT endlichkarlhans analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT felixstephanb analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT giegerchristian analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT grallertharald analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT herderchristian analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT hoffmannwolfgang analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT homuthgeorg analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT illigthomas analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT kruppajochen analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT meitingerthomas analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT mullerchristian analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT nauckmatthias analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT petersannette analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT rettigrainer analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT rodenmichael analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT strauchkonstantin analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT volkeruwe analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT volzkehenry analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT wahlsimone analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT wallaschofskihenri analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT wildphilipps analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT zellertanja analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT teumeralexander analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT prokischholger analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT zieglerandreas analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium