Cargando…
Analyzing Illumina Gene Expression Microarray Data from Different Tissues: Methodological Aspects of Data Analysis in the MetaXpress Consortium
Microarray profiling of gene expression is widely applied in molecular biology and functional genomics. Experimental and technical variations make meta-analysis of different studies challenging. In a total of 3358 samples, all from German population-based cohorts, we investigated the effect of data...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517598/ https://www.ncbi.nlm.nih.gov/pubmed/23236413 http://dx.doi.org/10.1371/journal.pone.0050938 |
_version_ | 1782252453601738752 |
---|---|
author | Schurmann, Claudia Heim, Katharina Schillert, Arne Blankenberg, Stefan Carstensen, Maren Dörr, Marcus Endlich, Karlhans Felix, Stephan B. Gieger, Christian Grallert, Harald Herder, Christian Hoffmann, Wolfgang Homuth, Georg Illig, Thomas Kruppa, Jochen Meitinger, Thomas Müller, Christian Nauck, Matthias Peters, Annette Rettig, Rainer Roden, Michael Strauch, Konstantin Völker, Uwe Völzke, Henry Wahl, Simone Wallaschofski, Henri Wild, Philipp S. Zeller, Tanja Teumer, Alexander Prokisch, Holger Ziegler, Andreas |
author_facet | Schurmann, Claudia Heim, Katharina Schillert, Arne Blankenberg, Stefan Carstensen, Maren Dörr, Marcus Endlich, Karlhans Felix, Stephan B. Gieger, Christian Grallert, Harald Herder, Christian Hoffmann, Wolfgang Homuth, Georg Illig, Thomas Kruppa, Jochen Meitinger, Thomas Müller, Christian Nauck, Matthias Peters, Annette Rettig, Rainer Roden, Michael Strauch, Konstantin Völker, Uwe Völzke, Henry Wahl, Simone Wallaschofski, Henri Wild, Philipp S. Zeller, Tanja Teumer, Alexander Prokisch, Holger Ziegler, Andreas |
author_sort | Schurmann, Claudia |
collection | PubMed |
description | Microarray profiling of gene expression is widely applied in molecular biology and functional genomics. Experimental and technical variations make meta-analysis of different studies challenging. In a total of 3358 samples, all from German population-based cohorts, we investigated the effect of data preprocessing and the variability due to sample processing in whole blood cell and blood monocyte gene expression data, measured on the Illumina HumanHT-12 v3 BeadChip array. Gene expression signal intensities were similar after applying the log(2) or the variance-stabilizing transformation. In all cohorts, the first principal component (PC) explained more than 95% of the total variation. Technical factors substantially influenced signal intensity values, especially the Illumina chip assignment (33–48% of the variance), the RNA amplification batch (12–24%), the RNA isolation batch (16%), and the sample storage time, in particular the time between blood donation and RNA isolation for the whole blood cell samples (2–3%), and the time between RNA isolation and amplification for the monocyte samples (2%). White blood cell composition parameters were the strongest biological factors influencing the expression signal intensities in the whole blood cell samples (3%), followed by sex (1–2%) in both sample types. Known single nucleotide polymorphisms (SNPs) were located in 38% of the analyzed probe sequences and 4% of them included common SNPs (minor allele frequency >5%). Out of the tested SNPs, 1.4% significantly modified the probe-specific expression signals (Bonferroni corrected p-value<0.05), but in almost half of these events the signal intensities were even increased despite the occurrence of the mismatch. Thus, the vast majority of SNPs within probes had no significant effect on hybridization efficiency. In summary, adjustment for a few selected technical factors greatly improved reliability of gene expression analyses. Such adjustments are particularly required for meta-analyses. |
format | Online Article Text |
id | pubmed-3517598 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35175982012-12-12 Analyzing Illumina Gene Expression Microarray Data from Different Tissues: Methodological Aspects of Data Analysis in the MetaXpress Consortium Schurmann, Claudia Heim, Katharina Schillert, Arne Blankenberg, Stefan Carstensen, Maren Dörr, Marcus Endlich, Karlhans Felix, Stephan B. Gieger, Christian Grallert, Harald Herder, Christian Hoffmann, Wolfgang Homuth, Georg Illig, Thomas Kruppa, Jochen Meitinger, Thomas Müller, Christian Nauck, Matthias Peters, Annette Rettig, Rainer Roden, Michael Strauch, Konstantin Völker, Uwe Völzke, Henry Wahl, Simone Wallaschofski, Henri Wild, Philipp S. Zeller, Tanja Teumer, Alexander Prokisch, Holger Ziegler, Andreas PLoS One Research Article Microarray profiling of gene expression is widely applied in molecular biology and functional genomics. Experimental and technical variations make meta-analysis of different studies challenging. In a total of 3358 samples, all from German population-based cohorts, we investigated the effect of data preprocessing and the variability due to sample processing in whole blood cell and blood monocyte gene expression data, measured on the Illumina HumanHT-12 v3 BeadChip array. Gene expression signal intensities were similar after applying the log(2) or the variance-stabilizing transformation. In all cohorts, the first principal component (PC) explained more than 95% of the total variation. Technical factors substantially influenced signal intensity values, especially the Illumina chip assignment (33–48% of the variance), the RNA amplification batch (12–24%), the RNA isolation batch (16%), and the sample storage time, in particular the time between blood donation and RNA isolation for the whole blood cell samples (2–3%), and the time between RNA isolation and amplification for the monocyte samples (2%). White blood cell composition parameters were the strongest biological factors influencing the expression signal intensities in the whole blood cell samples (3%), followed by sex (1–2%) in both sample types. Known single nucleotide polymorphisms (SNPs) were located in 38% of the analyzed probe sequences and 4% of them included common SNPs (minor allele frequency >5%). Out of the tested SNPs, 1.4% significantly modified the probe-specific expression signals (Bonferroni corrected p-value<0.05), but in almost half of these events the signal intensities were even increased despite the occurrence of the mismatch. Thus, the vast majority of SNPs within probes had no significant effect on hybridization efficiency. In summary, adjustment for a few selected technical factors greatly improved reliability of gene expression analyses. Such adjustments are particularly required for meta-analyses. Public Library of Science 2012-12-07 /pmc/articles/PMC3517598/ /pubmed/23236413 http://dx.doi.org/10.1371/journal.pone.0050938 Text en © 2012 Schurmann et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Schurmann, Claudia Heim, Katharina Schillert, Arne Blankenberg, Stefan Carstensen, Maren Dörr, Marcus Endlich, Karlhans Felix, Stephan B. Gieger, Christian Grallert, Harald Herder, Christian Hoffmann, Wolfgang Homuth, Georg Illig, Thomas Kruppa, Jochen Meitinger, Thomas Müller, Christian Nauck, Matthias Peters, Annette Rettig, Rainer Roden, Michael Strauch, Konstantin Völker, Uwe Völzke, Henry Wahl, Simone Wallaschofski, Henri Wild, Philipp S. Zeller, Tanja Teumer, Alexander Prokisch, Holger Ziegler, Andreas Analyzing Illumina Gene Expression Microarray Data from Different Tissues: Methodological Aspects of Data Analysis in the MetaXpress Consortium |
title | Analyzing Illumina Gene Expression Microarray Data from Different Tissues: Methodological Aspects of Data Analysis in the MetaXpress Consortium |
title_full | Analyzing Illumina Gene Expression Microarray Data from Different Tissues: Methodological Aspects of Data Analysis in the MetaXpress Consortium |
title_fullStr | Analyzing Illumina Gene Expression Microarray Data from Different Tissues: Methodological Aspects of Data Analysis in the MetaXpress Consortium |
title_full_unstemmed | Analyzing Illumina Gene Expression Microarray Data from Different Tissues: Methodological Aspects of Data Analysis in the MetaXpress Consortium |
title_short | Analyzing Illumina Gene Expression Microarray Data from Different Tissues: Methodological Aspects of Data Analysis in the MetaXpress Consortium |
title_sort | analyzing illumina gene expression microarray data from different tissues: methodological aspects of data analysis in the metaxpress consortium |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517598/ https://www.ncbi.nlm.nih.gov/pubmed/23236413 http://dx.doi.org/10.1371/journal.pone.0050938 |
work_keys_str_mv | AT schurmannclaudia analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT heimkatharina analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT schillertarne analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT blankenbergstefan analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT carstensenmaren analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT dorrmarcus analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT endlichkarlhans analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT felixstephanb analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT giegerchristian analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT grallertharald analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT herderchristian analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT hoffmannwolfgang analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT homuthgeorg analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT illigthomas analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT kruppajochen analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT meitingerthomas analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT mullerchristian analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT nauckmatthias analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT petersannette analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT rettigrainer analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT rodenmichael analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT strauchkonstantin analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT volkeruwe analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT volzkehenry analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT wahlsimone analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT wallaschofskihenri analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT wildphilipps analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT zellertanja analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT teumeralexander analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT prokischholger analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium AT zieglerandreas analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium |