Cargando…

Dynamics of Ribosomal Protein S1 on a Bacterial Ribosome with Cross-Linking and Mass Spectrometry

Ribosomal protein S1 has been shown to be a significant effector of prokaryotic translation. The protein is in fact capable of efficiently initiating translation, regardless of the presence of a Shine-Dalgarno sequence in mRNA. Structural insights into this process have remained elusive, as S1 is re...

Descripción completa

Detalles Bibliográficos
Autores principales: Lauber, Matthew A., Rappsilber, Juri, Reilly, James P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Biochemistry and Molecular Biology 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518124/
https://www.ncbi.nlm.nih.gov/pubmed/23033476
http://dx.doi.org/10.1074/mcp.M112.019562
Descripción
Sumario:Ribosomal protein S1 has been shown to be a significant effector of prokaryotic translation. The protein is in fact capable of efficiently initiating translation, regardless of the presence of a Shine-Dalgarno sequence in mRNA. Structural insights into this process have remained elusive, as S1 is recalcitrant to traditional techniques of structural analysis, such as x-ray crystallography. Through the application of protein cross-linking and high resolution mass spectrometry, we have detailed the ribosomal binding site of S1 and have observed evidence of its dynamics. Our results support a previous hypothesis that S1 acts as the mRNA catching arm of the prokaryotic ribosome. We also demonstrate that in solution the major domains of the 30S subunit are remarkably flexible, capable of moving 30–50Å with respect to one another.