Cargando…
A single vesicle content mixing assay for SNARE-mediated membrane fusion
The in vitro studies of membrane fusion mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) have primarily been performed by following the mixing of the lipids. However, the formation a of fusion pore and its expansion has been difficult to detect directly due...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518844/ https://www.ncbi.nlm.nih.gov/pubmed/20975723 http://dx.doi.org/10.1038/ncomms1054 |
Sumario: | The in vitro studies of membrane fusion mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) have primarily been performed by following the mixing of the lipids. However, the formation a of fusion pore and its expansion has been difficult to detect directly due to the leakiness of proteoliposomes, vesicle aggregation and rupture that often complicate the interpretation of ensemble fusion experiments. Fusion pore expansion is an essential step for full collapse fusion and recycling of the fusion machineries. Here, we demonstrate a method to detect the inter-vesicular mixing of large cargoes at the single molecule and vesicle level. The change in FRET signal when a DNA hairpin encapsulated in a surface-tethered vesicle encounters a complementary DNA strand from another vesicle indicates content mixing. We found that that the yeast SNARE complex alone without any accessory proteins can expand the fusion pore large enough to transmit ~ 11 kD cargoes. |
---|