Cargando…

Amelogenin: A novel protein with diverse applications in genetic and molecular profiling

Tooth enamel is a unique entity among all mineralized tissues because of the presence of high mineral content. It is non collagenous and does not undergo resorption and remodelling. Its formation occurs through a transient collaborating network of enamel matrix proteins which controls hydroxyapatite...

Descripción completa

Detalles Bibliográficos
Autores principales: Bansal, Ajay Kumar, Shetty, Devi Charan, Bindal, Ruchi, Pathak, Aparna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519216/
https://www.ncbi.nlm.nih.gov/pubmed/23248473
http://dx.doi.org/10.4103/0973-029X.102495
Descripción
Sumario:Tooth enamel is a unique entity among all mineralized tissues because of the presence of high mineral content. It is non collagenous and does not undergo resorption and remodelling. Its formation occurs through a transient collaborating network of enamel matrix proteins which controls hydroxyapatite crystal growth and orientation. Amelogenins constitute about 90% of the total enamel matrix proteins and play a major role in enamel bio mineralization. Amelogenin isoforms coalesce into nanospheres thus dictating the width and thickness of apatite crystals. The X and Y copies of amelogenins do not undergo homologous recombination, thus preferring it for sex determination in modern forensics. Recently, it was discovered that application of amelogenin to diseased periodontal tissue surfaces enhanced the regeneration of all the periodontal tissues. Additionally, low molecular mass amelogenin polypeptides have also been thought to possess osteogenic potential. Recent data regarding usage of immunohistochemical markers for mesenchymal stem cells suggested that amelogenin has the capacity to induce the recruitment of mesenchymal stem cells directly or indirectly during regeneration of the supporting periodontal tissues. Thus, our current concepts of dental enamel formation should be reviewed thoroughly so that this information could be applied to clinical circumstances where this understanding may be particularly relevant.