Cargando…
Real Time Metagenomics: Using k-mers to annotate metagenomes
Summary: Annotation of metagenomes involves comparing the individual sequence reads with a database of known sequences and assigning a unique function to each read. This is a time-consuming task that is computationally intensive (though not computationally complex). Here we present a novel approach...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519453/ https://www.ncbi.nlm.nih.gov/pubmed/23047562 http://dx.doi.org/10.1093/bioinformatics/bts599 |
Sumario: | Summary: Annotation of metagenomes involves comparing the individual sequence reads with a database of known sequences and assigning a unique function to each read. This is a time-consuming task that is computationally intensive (though not computationally complex). Here we present a novel approach to annotate metagenomes using unique k-mer oligopeptide sequences from 7 to 12 amino acids long. We demonstrate that k-mer-based annotations are faster and approach the sensitivity and precision of blastx-based annotations without loosing accuracy. A last-common ancestor approach was also developed to describe the members of the community. Availability and implementation: This open-source application was implemented in Perl and can be accessed via a user-friendly website at http://edwards.sdsu.edu/rtmg. In addition, code to access the annotation servers is available for download from http://www.theseed.org/. FIGfams and k-mers are available for download from ftp://ftp.theseed.org/FIGfams/. Contact: redwards@mail.sdsu.edu Supplementary information: Supplementary data are available at Bioinformatics online. |
---|