Cargando…
Your Relevance Feedback Is Essential: Enhancing the Learning to Rank Using the Virtual Feature Based Logistic Regression
Information retrieval applications have to publish their output in the form of ranked lists. Such a requirement motivates researchers to develop methods that can automatically learn effective ranking models. Many existing methods usually perform analysis on multidimensional features of query-documen...
Autores principales: | Cai, Fei, Guo, Deke, Chen, Honghui, Shu, Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519476/ https://www.ncbi.nlm.nih.gov/pubmed/23251359 http://dx.doi.org/10.1371/journal.pone.0050112 |
Ejemplares similares
-
Stable variable ranking and selection in regularized logistic regression for severely imbalanced big binary data
por: Nadeem, Khurram, et al.
Publicado: (2023) -
Enabling multi-level relevance feedback on PubMed by integrating rank learning into DBMS
por: Yu, Hwanjo, et al.
Publicado: (2010) -
Comprehensible Predictive Modeling Using Regularized Logistic Regression and Comorbidity Based Features
por: Stiglic, Gregor, et al.
Publicado: (2015) -
Applied logistic regression
por: Hosmer, David W, et al.
Publicado: (2013) -
Applied logistic regression /
por: Hosmer, David W.
Publicado: (2000)