Cargando…
Tumor-exosomes and leukocyte activation: an ambivalent crosstalk
BACKGROUND: Tumor-exosomes being reported to suppress or promote a cancer-directed immune response, we used exosomes of the rat pancreatic adenocarcinoma BSp73ASML (ASML) to evaluate, whether and which steps in immune response induction can be affected by tumor-exosomes and how the impaired responsi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519567/ https://www.ncbi.nlm.nih.gov/pubmed/23190502 http://dx.doi.org/10.1186/1478-811X-10-37 |
_version_ | 1782252689399218176 |
---|---|
author | Zech, Daniela Rana, Sanyukta Büchler, Markus W Zöller, Margot |
author_facet | Zech, Daniela Rana, Sanyukta Büchler, Markus W Zöller, Margot |
author_sort | Zech, Daniela |
collection | PubMed |
description | BACKGROUND: Tumor-exosomes being reported to suppress or promote a cancer-directed immune response, we used exosomes of the rat pancreatic adenocarcinoma BSp73ASML (ASML) to evaluate, whether and which steps in immune response induction can be affected by tumor-exosomes and how the impaired responsiveness can be circumvented. RESULTS: ASML-exosomes bind to and are taken up by all leukocyte subpopulations in vivo and in vitro, uptake by CD11b(+) leukocytes exceeding that by T and B cells. ASML-exosomes affect leukocyte proliferation via reduced CD44v6 up-regulation and lck, ZAP70 and ERK1,2 phosphorylation, which can be compensated by dendritic cells (DC). ASML-exosomes do not support T(reg). Yet, impaired activation of anti-apoptotic signals is accompanied by slightly increased apoptosis susceptibility. IgM secretion is unaffected; NK and CTL activity are strengthened, ASML-exosomes co-operating with DC in CTL activation. ASML-exosomes transiently interfere with leukocyte migration by occupying migration-promoting receptors CD44, CD49d, CD62L and CD54 during binding/internalization. CONCLUSION: ASML-exosomes might well serve as adjuvant in immunotherapy as they support leukocyte effector functions and have only a minor impact on leukocyte activation, which can be overridden by DC. However, exosome-induced modulation of immune cells relies, at least in part, on exosome uptake and message transfer. This implies that depending on the individual tumor's exosome composition, exosomes may distinctly affect the immune system. Nonetheless, whether immunotherapy can profit from using tumor-exosomes as adjuvant can easily be settled beforehand in vitro. |
format | Online Article Text |
id | pubmed-3519567 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35195672012-12-12 Tumor-exosomes and leukocyte activation: an ambivalent crosstalk Zech, Daniela Rana, Sanyukta Büchler, Markus W Zöller, Margot Cell Commun Signal Research BACKGROUND: Tumor-exosomes being reported to suppress or promote a cancer-directed immune response, we used exosomes of the rat pancreatic adenocarcinoma BSp73ASML (ASML) to evaluate, whether and which steps in immune response induction can be affected by tumor-exosomes and how the impaired responsiveness can be circumvented. RESULTS: ASML-exosomes bind to and are taken up by all leukocyte subpopulations in vivo and in vitro, uptake by CD11b(+) leukocytes exceeding that by T and B cells. ASML-exosomes affect leukocyte proliferation via reduced CD44v6 up-regulation and lck, ZAP70 and ERK1,2 phosphorylation, which can be compensated by dendritic cells (DC). ASML-exosomes do not support T(reg). Yet, impaired activation of anti-apoptotic signals is accompanied by slightly increased apoptosis susceptibility. IgM secretion is unaffected; NK and CTL activity are strengthened, ASML-exosomes co-operating with DC in CTL activation. ASML-exosomes transiently interfere with leukocyte migration by occupying migration-promoting receptors CD44, CD49d, CD62L and CD54 during binding/internalization. CONCLUSION: ASML-exosomes might well serve as adjuvant in immunotherapy as they support leukocyte effector functions and have only a minor impact on leukocyte activation, which can be overridden by DC. However, exosome-induced modulation of immune cells relies, at least in part, on exosome uptake and message transfer. This implies that depending on the individual tumor's exosome composition, exosomes may distinctly affect the immune system. Nonetheless, whether immunotherapy can profit from using tumor-exosomes as adjuvant can easily be settled beforehand in vitro. BioMed Central 2012-11-28 /pmc/articles/PMC3519567/ /pubmed/23190502 http://dx.doi.org/10.1186/1478-811X-10-37 Text en Copyright ©2012 Zech et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Zech, Daniela Rana, Sanyukta Büchler, Markus W Zöller, Margot Tumor-exosomes and leukocyte activation: an ambivalent crosstalk |
title | Tumor-exosomes and leukocyte activation: an ambivalent crosstalk |
title_full | Tumor-exosomes and leukocyte activation: an ambivalent crosstalk |
title_fullStr | Tumor-exosomes and leukocyte activation: an ambivalent crosstalk |
title_full_unstemmed | Tumor-exosomes and leukocyte activation: an ambivalent crosstalk |
title_short | Tumor-exosomes and leukocyte activation: an ambivalent crosstalk |
title_sort | tumor-exosomes and leukocyte activation: an ambivalent crosstalk |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519567/ https://www.ncbi.nlm.nih.gov/pubmed/23190502 http://dx.doi.org/10.1186/1478-811X-10-37 |
work_keys_str_mv | AT zechdaniela tumorexosomesandleukocyteactivationanambivalentcrosstalk AT ranasanyukta tumorexosomesandleukocyteactivationanambivalentcrosstalk AT buchlermarkusw tumorexosomesandleukocyteactivationanambivalentcrosstalk AT zollermargot tumorexosomesandleukocyteactivationanambivalentcrosstalk |