Cargando…

Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras

BACKGROUND: Understanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, particularly in vaccine development. Central America is an area where malaria is a public health problem, but little is kn...

Descripción completa

Detalles Bibliográficos
Autores principales: Lopez, Ana Cecilia, Ortiz, Andres, Coello, Jorge, Sosa-Ochoa, Wilfredo, Torres, Rosa E Mejia, Banegas, Engels I, Jovel, Irina, Fontecha, Gustavo A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519596/
https://www.ncbi.nlm.nih.gov/pubmed/23181845
http://dx.doi.org/10.1186/1475-2875-11-391
_version_ 1782252695724228608
author Lopez, Ana Cecilia
Ortiz, Andres
Coello, Jorge
Sosa-Ochoa, Wilfredo
Torres, Rosa E Mejia
Banegas, Engels I
Jovel, Irina
Fontecha, Gustavo A
author_facet Lopez, Ana Cecilia
Ortiz, Andres
Coello, Jorge
Sosa-Ochoa, Wilfredo
Torres, Rosa E Mejia
Banegas, Engels I
Jovel, Irina
Fontecha, Gustavo A
author_sort Lopez, Ana Cecilia
collection PubMed
description BACKGROUND: Understanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, particularly in vaccine development. Central America is an area where malaria is a public health problem, but little is known about the genetic diversity of the parasite’s circulating species. This study aimed to investigate the allelic frequency and molecular diversity of five surface antigens in field isolates from Honduras. METHODS: Five molecular markers were analysed to determine the genotypes of Plasmodium vivax and Plasmodium falciparum from endemic areas in Honduras. Genetic diversity of ama-1, msp-1 and csp was investigated for P. vivax, and msp-1 and msp-2 for P. falciparum. Allelic frequencies were calculated and sequence analysis performed. RESULTS AND CONCLUSION: A high genetic diversity was observed within Plasmodium isolates from Honduras. A different number of genotypes were elucidated: 41 (n = 77) for pvama-1; 23 (n = 84) for pvcsp; and 23 (n = 35) for pfmsp-1. Pvcsp sequences showed VK210 as the only subtype present in Honduran isolates. Pvmsp-1 (F2) was the most polymorphic marker for P. vivax isolates while pvama-1 was least variable. All three allelic families described for pfmsp-1 (n = 30) block 2 (K1, MAD20, and RO33), and both allelic families described for the central domain of pfmsp-2 (n = 11) (3D7 and FC27) were detected. However, K1 and 3D7 allelic families were predominant. All markers were randomly distributed across the country and no geographic correlation was found. To date, this is the most complete report on molecular characterization of P. vivax and P. falciparum field isolates in Honduras with regards to genetic diversity. These results indicate that P. vivax and P. falciparum parasite populations are highly diverse in Honduras despite the low level of transmission.
format Online
Article
Text
id pubmed-3519596
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35195962012-12-12 Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras Lopez, Ana Cecilia Ortiz, Andres Coello, Jorge Sosa-Ochoa, Wilfredo Torres, Rosa E Mejia Banegas, Engels I Jovel, Irina Fontecha, Gustavo A Malar J Research BACKGROUND: Understanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, particularly in vaccine development. Central America is an area where malaria is a public health problem, but little is known about the genetic diversity of the parasite’s circulating species. This study aimed to investigate the allelic frequency and molecular diversity of five surface antigens in field isolates from Honduras. METHODS: Five molecular markers were analysed to determine the genotypes of Plasmodium vivax and Plasmodium falciparum from endemic areas in Honduras. Genetic diversity of ama-1, msp-1 and csp was investigated for P. vivax, and msp-1 and msp-2 for P. falciparum. Allelic frequencies were calculated and sequence analysis performed. RESULTS AND CONCLUSION: A high genetic diversity was observed within Plasmodium isolates from Honduras. A different number of genotypes were elucidated: 41 (n = 77) for pvama-1; 23 (n = 84) for pvcsp; and 23 (n = 35) for pfmsp-1. Pvcsp sequences showed VK210 as the only subtype present in Honduran isolates. Pvmsp-1 (F2) was the most polymorphic marker for P. vivax isolates while pvama-1 was least variable. All three allelic families described for pfmsp-1 (n = 30) block 2 (K1, MAD20, and RO33), and both allelic families described for the central domain of pfmsp-2 (n = 11) (3D7 and FC27) were detected. However, K1 and 3D7 allelic families were predominant. All markers were randomly distributed across the country and no geographic correlation was found. To date, this is the most complete report on molecular characterization of P. vivax and P. falciparum field isolates in Honduras with regards to genetic diversity. These results indicate that P. vivax and P. falciparum parasite populations are highly diverse in Honduras despite the low level of transmission. BioMed Central 2012-11-26 /pmc/articles/PMC3519596/ /pubmed/23181845 http://dx.doi.org/10.1186/1475-2875-11-391 Text en Copyright ©2012 Lopez et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Lopez, Ana Cecilia
Ortiz, Andres
Coello, Jorge
Sosa-Ochoa, Wilfredo
Torres, Rosa E Mejia
Banegas, Engels I
Jovel, Irina
Fontecha, Gustavo A
Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras
title Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras
title_full Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras
title_fullStr Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras
title_full_unstemmed Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras
title_short Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras
title_sort genetic diversity of plasmodium vivax and plasmodium falciparum in honduras
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519596/
https://www.ncbi.nlm.nih.gov/pubmed/23181845
http://dx.doi.org/10.1186/1475-2875-11-391
work_keys_str_mv AT lopezanacecilia geneticdiversityofplasmodiumvivaxandplasmodiumfalciparuminhonduras
AT ortizandres geneticdiversityofplasmodiumvivaxandplasmodiumfalciparuminhonduras
AT coellojorge geneticdiversityofplasmodiumvivaxandplasmodiumfalciparuminhonduras
AT sosaochoawilfredo geneticdiversityofplasmodiumvivaxandplasmodiumfalciparuminhonduras
AT torresrosaemejia geneticdiversityofplasmodiumvivaxandplasmodiumfalciparuminhonduras
AT banegasengelsi geneticdiversityofplasmodiumvivaxandplasmodiumfalciparuminhonduras
AT jovelirina geneticdiversityofplasmodiumvivaxandplasmodiumfalciparuminhonduras
AT fontechagustavoa geneticdiversityofplasmodiumvivaxandplasmodiumfalciparuminhonduras