Cargando…

Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

BACKGROUND: Alcohol use disorders (AUDs) lead to alterations in central nervous system (CNS) architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Hicks, Steven D, Lewis, Lambert, Ritchie, Julie, Burke, Patrick, Abdul-Malak, Ynesse, Adackapara, Nyssa, Canfield, Kelly, Shwarts, Erik, Gentile, Karen, Meszaros, Zsuzsa Szombathyne, Middleton, Frank A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519626/
https://www.ncbi.nlm.nih.gov/pubmed/23095216
http://dx.doi.org/10.1186/1471-2202-13-128
_version_ 1782252702543118336
author Hicks, Steven D
Lewis, Lambert
Ritchie, Julie
Burke, Patrick
Abdul-Malak, Ynesse
Adackapara, Nyssa
Canfield, Kelly
Shwarts, Erik
Gentile, Karen
Meszaros, Zsuzsa Szombathyne
Middleton, Frank A
author_facet Hicks, Steven D
Lewis, Lambert
Ritchie, Julie
Burke, Patrick
Abdul-Malak, Ynesse
Adackapara, Nyssa
Canfield, Kelly
Shwarts, Erik
Gentile, Karen
Meszaros, Zsuzsa Szombathyne
Middleton, Frank A
author_sort Hicks, Steven D
collection PubMed
description BACKGROUND: Alcohol use disorders (AUDs) lead to alterations in central nervous system (CNS) architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs) produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. RESULTS: Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs) of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP) assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1) was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5) showed a highly significant correlation with AUD-induced decreases in the volume of the left parietal supramarginal gyrus and neuropsychological measures. CONCLUSIONS: These results demonstrate that alcohol-induced changes in genes related to proliferation, apoptosis, and DNA-repair are observable in the peripheral blood and may serve as a useful biomarker for CNS structural damage and functional performance deficits in human AUD subjects.
format Online
Article
Text
id pubmed-3519626
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35196262012-12-12 Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations Hicks, Steven D Lewis, Lambert Ritchie, Julie Burke, Patrick Abdul-Malak, Ynesse Adackapara, Nyssa Canfield, Kelly Shwarts, Erik Gentile, Karen Meszaros, Zsuzsa Szombathyne Middleton, Frank A BMC Neurosci Research Article BACKGROUND: Alcohol use disorders (AUDs) lead to alterations in central nervous system (CNS) architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs) produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. RESULTS: Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs) of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP) assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1) was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5) showed a highly significant correlation with AUD-induced decreases in the volume of the left parietal supramarginal gyrus and neuropsychological measures. CONCLUSIONS: These results demonstrate that alcohol-induced changes in genes related to proliferation, apoptosis, and DNA-repair are observable in the peripheral blood and may serve as a useful biomarker for CNS structural damage and functional performance deficits in human AUD subjects. BioMed Central 2012-10-25 /pmc/articles/PMC3519626/ /pubmed/23095216 http://dx.doi.org/10.1186/1471-2202-13-128 Text en Copyright ©2012 Hicks et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Hicks, Steven D
Lewis, Lambert
Ritchie, Julie
Burke, Patrick
Abdul-Malak, Ynesse
Adackapara, Nyssa
Canfield, Kelly
Shwarts, Erik
Gentile, Karen
Meszaros, Zsuzsa Szombathyne
Middleton, Frank A
Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations
title Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations
title_full Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations
title_fullStr Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations
title_full_unstemmed Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations
title_short Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations
title_sort evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519626/
https://www.ncbi.nlm.nih.gov/pubmed/23095216
http://dx.doi.org/10.1186/1471-2202-13-128
work_keys_str_mv AT hicksstevend evaluationofcellproliferationapoptosisanddnarepairgenesaspotentialbiomarkersforethanolinducedcnsalterations
AT lewislambert evaluationofcellproliferationapoptosisanddnarepairgenesaspotentialbiomarkersforethanolinducedcnsalterations
AT ritchiejulie evaluationofcellproliferationapoptosisanddnarepairgenesaspotentialbiomarkersforethanolinducedcnsalterations
AT burkepatrick evaluationofcellproliferationapoptosisanddnarepairgenesaspotentialbiomarkersforethanolinducedcnsalterations
AT abdulmalakynesse evaluationofcellproliferationapoptosisanddnarepairgenesaspotentialbiomarkersforethanolinducedcnsalterations
AT adackaparanyssa evaluationofcellproliferationapoptosisanddnarepairgenesaspotentialbiomarkersforethanolinducedcnsalterations
AT canfieldkelly evaluationofcellproliferationapoptosisanddnarepairgenesaspotentialbiomarkersforethanolinducedcnsalterations
AT shwartserik evaluationofcellproliferationapoptosisanddnarepairgenesaspotentialbiomarkersforethanolinducedcnsalterations
AT gentilekaren evaluationofcellproliferationapoptosisanddnarepairgenesaspotentialbiomarkersforethanolinducedcnsalterations
AT meszaroszsuzsaszombathyne evaluationofcellproliferationapoptosisanddnarepairgenesaspotentialbiomarkersforethanolinducedcnsalterations
AT middletonfranka evaluationofcellproliferationapoptosisanddnarepairgenesaspotentialbiomarkersforethanolinducedcnsalterations