Cargando…
Novel Interactions between FOXM1 and CDC25A Regulate the Cell Cycle
FOXM1 is a critical regulator of the G1/S and G2/M cell cycle transitions, as well as of the mitotic spindle assembly. Previous studies have suggested that FOXM1 regulates CDC25A gene transcription, but the mechanism remains unknown. Here, we provide evidence that FOXM1 directly regulates CDC25A gen...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519786/ https://www.ncbi.nlm.nih.gov/pubmed/23240008 http://dx.doi.org/10.1371/journal.pone.0051277 |
_version_ | 1782252737022394368 |
---|---|
author | Sullivan, Con Liu, Youhong Shen, Jingjing Curtis, Adam Newman, Christina Hock, Janet M. Li, Xiong |
author_facet | Sullivan, Con Liu, Youhong Shen, Jingjing Curtis, Adam Newman, Christina Hock, Janet M. Li, Xiong |
author_sort | Sullivan, Con |
collection | PubMed |
description | FOXM1 is a critical regulator of the G1/S and G2/M cell cycle transitions, as well as of the mitotic spindle assembly. Previous studies have suggested that FOXM1 regulates CDC25A gene transcription, but the mechanism remains unknown. Here, we provide evidence that FOXM1 directly regulates CDC25A gene transcription via direct promoter binding and indirect activation of E2F-dependent pathways. Prior literature reported that CDC25B and CDC25C activate CDK1/cyclinB complexes in order to enable phosphorylation of FOXM1. It was unknown if CDC25A functions in a similar manner. We report that FOXM1 transcriptional activity is synergistically enhanced when co-expressed with CDC25A. The increase is dependent upon CDK1 phosphorylation of FOXM1 at T600, T611 and T620 residues. We also report a novel protein interaction between FOXM1 and CDC25A via the C-terminus of FOXM1. We demonstrate that the phosphorylation of Thr 600 and Thr 611 residues of FOXM1 enhanced this interaction, and that the interaction is dependent upon CDC25A phosphatase activity. Our work provides novel insight into the underlying mechanisms by which FOXM1 controls the cell cycle through its association with CDC25A. |
format | Online Article Text |
id | pubmed-3519786 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35197862012-12-13 Novel Interactions between FOXM1 and CDC25A Regulate the Cell Cycle Sullivan, Con Liu, Youhong Shen, Jingjing Curtis, Adam Newman, Christina Hock, Janet M. Li, Xiong PLoS One Research Article FOXM1 is a critical regulator of the G1/S and G2/M cell cycle transitions, as well as of the mitotic spindle assembly. Previous studies have suggested that FOXM1 regulates CDC25A gene transcription, but the mechanism remains unknown. Here, we provide evidence that FOXM1 directly regulates CDC25A gene transcription via direct promoter binding and indirect activation of E2F-dependent pathways. Prior literature reported that CDC25B and CDC25C activate CDK1/cyclinB complexes in order to enable phosphorylation of FOXM1. It was unknown if CDC25A functions in a similar manner. We report that FOXM1 transcriptional activity is synergistically enhanced when co-expressed with CDC25A. The increase is dependent upon CDK1 phosphorylation of FOXM1 at T600, T611 and T620 residues. We also report a novel protein interaction between FOXM1 and CDC25A via the C-terminus of FOXM1. We demonstrate that the phosphorylation of Thr 600 and Thr 611 residues of FOXM1 enhanced this interaction, and that the interaction is dependent upon CDC25A phosphatase activity. Our work provides novel insight into the underlying mechanisms by which FOXM1 controls the cell cycle through its association with CDC25A. Public Library of Science 2012-12-11 /pmc/articles/PMC3519786/ /pubmed/23240008 http://dx.doi.org/10.1371/journal.pone.0051277 Text en © 2012 Sullivan et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Sullivan, Con Liu, Youhong Shen, Jingjing Curtis, Adam Newman, Christina Hock, Janet M. Li, Xiong Novel Interactions between FOXM1 and CDC25A Regulate the Cell Cycle |
title | Novel Interactions between FOXM1 and CDC25A Regulate the Cell Cycle |
title_full | Novel Interactions between FOXM1 and CDC25A Regulate the Cell Cycle |
title_fullStr | Novel Interactions between FOXM1 and CDC25A Regulate the Cell Cycle |
title_full_unstemmed | Novel Interactions between FOXM1 and CDC25A Regulate the Cell Cycle |
title_short | Novel Interactions between FOXM1 and CDC25A Regulate the Cell Cycle |
title_sort | novel interactions between foxm1 and cdc25a regulate the cell cycle |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519786/ https://www.ncbi.nlm.nih.gov/pubmed/23240008 http://dx.doi.org/10.1371/journal.pone.0051277 |
work_keys_str_mv | AT sullivancon novelinteractionsbetweenfoxm1andcdc25aregulatethecellcycle AT liuyouhong novelinteractionsbetweenfoxm1andcdc25aregulatethecellcycle AT shenjingjing novelinteractionsbetweenfoxm1andcdc25aregulatethecellcycle AT curtisadam novelinteractionsbetweenfoxm1andcdc25aregulatethecellcycle AT newmanchristina novelinteractionsbetweenfoxm1andcdc25aregulatethecellcycle AT hockjanetm novelinteractionsbetweenfoxm1andcdc25aregulatethecellcycle AT lixiong novelinteractionsbetweenfoxm1andcdc25aregulatethecellcycle |