Cargando…
Functioning of a Shallow-Water Sediment System during Experimental Warming and Nutrient Enrichment
Effects of warming and nutrient enrichment on intact unvegetated shallow-water sediment were investigated for 5 weeks in the autumn under simulated natural field conditions, with a main focus on trophic state and benthic nitrogen cycling. In a flow-through system, sediment was exposed to either seaw...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519877/ https://www.ncbi.nlm.nih.gov/pubmed/23240032 http://dx.doi.org/10.1371/journal.pone.0051503 |
_version_ | 1782252757562949632 |
---|---|
author | Alsterberg, Christian Sundbäck, Kristina Hulth, Stefan |
author_facet | Alsterberg, Christian Sundbäck, Kristina Hulth, Stefan |
author_sort | Alsterberg, Christian |
collection | PubMed |
description | Effects of warming and nutrient enrichment on intact unvegetated shallow-water sediment were investigated for 5 weeks in the autumn under simulated natural field conditions, with a main focus on trophic state and benthic nitrogen cycling. In a flow-through system, sediment was exposed to either seawater at ambient temperature or seawater heated 4°C above ambient, with either natural or nutrient enriched water. Sediment–water fluxes of oxygen and inorganic nutrients, nitrogen mineralization, and denitrification were measured. Warming resulted in an earlier shift to net heterotrophy due to increased community respiration; primary production was not affected by temperature but (slightly) by nutrient enrichment. The heterotrophic state was, however, not further strengthened by warming, but was rather weakened, probably because increased mineralization induced a shortage of labile organic matter. Climate-related warming of seawater during autumn could therefore, in contrast to previous predictions, induce shorter but more intensive heterotrophic periods in shallow-water sediments, followed by longer autotrophic periods. Increased nitrogen mineralization and subsequent effluxes of ammonium during warming suggested a preferential response of organisms driving nitrogen mineralization when compared to sinks of ammonium such as nitrification and algal assimilation. Warming and nutrient enrichment resulted in non-additive effects on nitrogen mineralization and denitrification (synergism), as well as on benthic fluxes of phosphate (antagonism). The mode of interaction appears to be related to the trophic level of the organisms that are the main drivers of the affected processes. Despite the weak response of benthic microalgae to both warming and nutrient enrichment, the assimilation of nitrogen by microalgae was similar in magnitude to rates of nitrogen mineralization. This implies a sustained filter function and retention capacity of nutrients by the sediment. |
format | Online Article Text |
id | pubmed-3519877 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35198772012-12-13 Functioning of a Shallow-Water Sediment System during Experimental Warming and Nutrient Enrichment Alsterberg, Christian Sundbäck, Kristina Hulth, Stefan PLoS One Research Article Effects of warming and nutrient enrichment on intact unvegetated shallow-water sediment were investigated for 5 weeks in the autumn under simulated natural field conditions, with a main focus on trophic state and benthic nitrogen cycling. In a flow-through system, sediment was exposed to either seawater at ambient temperature or seawater heated 4°C above ambient, with either natural or nutrient enriched water. Sediment–water fluxes of oxygen and inorganic nutrients, nitrogen mineralization, and denitrification were measured. Warming resulted in an earlier shift to net heterotrophy due to increased community respiration; primary production was not affected by temperature but (slightly) by nutrient enrichment. The heterotrophic state was, however, not further strengthened by warming, but was rather weakened, probably because increased mineralization induced a shortage of labile organic matter. Climate-related warming of seawater during autumn could therefore, in contrast to previous predictions, induce shorter but more intensive heterotrophic periods in shallow-water sediments, followed by longer autotrophic periods. Increased nitrogen mineralization and subsequent effluxes of ammonium during warming suggested a preferential response of organisms driving nitrogen mineralization when compared to sinks of ammonium such as nitrification and algal assimilation. Warming and nutrient enrichment resulted in non-additive effects on nitrogen mineralization and denitrification (synergism), as well as on benthic fluxes of phosphate (antagonism). The mode of interaction appears to be related to the trophic level of the organisms that are the main drivers of the affected processes. Despite the weak response of benthic microalgae to both warming and nutrient enrichment, the assimilation of nitrogen by microalgae was similar in magnitude to rates of nitrogen mineralization. This implies a sustained filter function and retention capacity of nutrients by the sediment. Public Library of Science 2012-12-11 /pmc/articles/PMC3519877/ /pubmed/23240032 http://dx.doi.org/10.1371/journal.pone.0051503 Text en © 2012 Alsterberg et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Alsterberg, Christian Sundbäck, Kristina Hulth, Stefan Functioning of a Shallow-Water Sediment System during Experimental Warming and Nutrient Enrichment |
title | Functioning of a Shallow-Water Sediment System during Experimental Warming and Nutrient Enrichment |
title_full | Functioning of a Shallow-Water Sediment System during Experimental Warming and Nutrient Enrichment |
title_fullStr | Functioning of a Shallow-Water Sediment System during Experimental Warming and Nutrient Enrichment |
title_full_unstemmed | Functioning of a Shallow-Water Sediment System during Experimental Warming and Nutrient Enrichment |
title_short | Functioning of a Shallow-Water Sediment System during Experimental Warming and Nutrient Enrichment |
title_sort | functioning of a shallow-water sediment system during experimental warming and nutrient enrichment |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519877/ https://www.ncbi.nlm.nih.gov/pubmed/23240032 http://dx.doi.org/10.1371/journal.pone.0051503 |
work_keys_str_mv | AT alsterbergchristian functioningofashallowwatersedimentsystemduringexperimentalwarmingandnutrientenrichment AT sundbackkristina functioningofashallowwatersedimentsystemduringexperimentalwarmingandnutrientenrichment AT hulthstefan functioningofashallowwatersedimentsystemduringexperimentalwarmingandnutrientenrichment |