Cargando…
Sequential stopping for high-throughput experiments
In high-throughput experiments, the sample size is typically chosen informally. Most formal sample-size calculations depend critically on prior knowledge. We propose a sequential strategy that, by updating knowledge when new data are available, depends less critically on prior assumptions. Experimen...
Autores principales: | Rossell, David, Müller, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3520501/ https://www.ncbi.nlm.nih.gov/pubmed/22908218 http://dx.doi.org/10.1093/biostatistics/kxs026 |
Ejemplares similares
-
Assessing Significance in High-Throughput Experiments by Sequential Goodness of Fit and q-Value Estimation
por: Carvajal-Rodriguez, Antonio, et al.
Publicado: (2011) -
The effect of apathy and compulsivity on planning and stopping in sequential decision-making
por: Scholl, Jacqueline, et al.
Publicado: (2022) -
Multi‐arm group sequential designs with a simultaneous stopping rule
por: Urach, S., et al.
Publicado: (2016) -
The Stop Signal Task for Measuring Behavioral Inhibition in Mice With Increased Sensitivity and High-Throughput Operation
por: Caglayan, Alican, et al.
Publicado: (2021) -
High-Throughput Strategy for Profiling Sequential Section With Multiplex Staining of Mouse Brain
por: Chen, Siqi, et al.
Publicado: (2021)