Cargando…
Weak Glycolipid Binding of a Microdomain-Tracer Peptide Correlates with Aggregation and Slow Diffusion on Cell Membranes
Organized assembly or aggregation of sphingolipid-binding ligands, such as certain toxins and pathogens, has been suggested to increase binding affinity of the ligand to the cell membrane and cause membrane reorganization or distortion. Here we show that the diffusion behavior of the fluorescently t...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3520979/ https://www.ncbi.nlm.nih.gov/pubmed/23251459 http://dx.doi.org/10.1371/journal.pone.0051222 |
_version_ | 1782252874923769856 |
---|---|
author | Lauterbach, Tim Manna, Manoj Ruhnow, Maria Wisantoso, Yudi Wang, Yaofeng Matysik, Artur Oglęcka, Kamila Mu, Yuguang Geifman-Shochat, Susana Wohland, Thorsten Kraut, Rachel |
author_facet | Lauterbach, Tim Manna, Manoj Ruhnow, Maria Wisantoso, Yudi Wang, Yaofeng Matysik, Artur Oglęcka, Kamila Mu, Yuguang Geifman-Shochat, Susana Wohland, Thorsten Kraut, Rachel |
author_sort | Lauterbach, Tim |
collection | PubMed |
description | Organized assembly or aggregation of sphingolipid-binding ligands, such as certain toxins and pathogens, has been suggested to increase binding affinity of the ligand to the cell membrane and cause membrane reorganization or distortion. Here we show that the diffusion behavior of the fluorescently tagged sphingolipid-interacting peptide probe SBD (Sphingolipid Binding Domain) is altered by modifications in the construction of the peptide sequence that both result in a reduction in binding to ganglioside-containing supported lipid membranes, and at the same time increase aggregation on the cell plasma membrane, but that do not change relative amounts of secondary structural features. We tested the effects of modifying the overall charge and construction of the SBD probe on its binding and diffusion behavior, by Surface Plasmon Resonance (SPR; Biacore) analysis on lipid surfaces, and by Fluorescence Correlation Spectroscopy (FCS) on live cells, respectively. SBD binds preferentially to membranes containing the highly sialylated gangliosides GT1b and GD1a. However, simple charge interactions of the peptide with the negative ganglioside do not appear to be a critical determinant of binding. Rather, an aggregation-suppressing amino acid composition and linker between the fluorophore and the peptide are required for optimum binding of the SBD to ganglioside-containing supported lipid bilayer surfaces, as well as for interaction with the membrane. Interestingly, the strength of interactions with ganglioside-containing artificial membranes is mirrored in the diffusion behavior by FCS on cell membranes, with stronger binders displaying similar characteristic diffusion profiles. Our findings indicate that for aggregation-prone peptides, aggregation occurs upon contact with the cell membrane, and rather than giving a stronger interaction with the membrane, aggregation is accompanied by weaker binding and complex diffusion profiles indicative of heterogeneous diffusion behavior in the probe population. |
format | Online Article Text |
id | pubmed-3520979 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35209792012-12-18 Weak Glycolipid Binding of a Microdomain-Tracer Peptide Correlates with Aggregation and Slow Diffusion on Cell Membranes Lauterbach, Tim Manna, Manoj Ruhnow, Maria Wisantoso, Yudi Wang, Yaofeng Matysik, Artur Oglęcka, Kamila Mu, Yuguang Geifman-Shochat, Susana Wohland, Thorsten Kraut, Rachel PLoS One Research Article Organized assembly or aggregation of sphingolipid-binding ligands, such as certain toxins and pathogens, has been suggested to increase binding affinity of the ligand to the cell membrane and cause membrane reorganization or distortion. Here we show that the diffusion behavior of the fluorescently tagged sphingolipid-interacting peptide probe SBD (Sphingolipid Binding Domain) is altered by modifications in the construction of the peptide sequence that both result in a reduction in binding to ganglioside-containing supported lipid membranes, and at the same time increase aggregation on the cell plasma membrane, but that do not change relative amounts of secondary structural features. We tested the effects of modifying the overall charge and construction of the SBD probe on its binding and diffusion behavior, by Surface Plasmon Resonance (SPR; Biacore) analysis on lipid surfaces, and by Fluorescence Correlation Spectroscopy (FCS) on live cells, respectively. SBD binds preferentially to membranes containing the highly sialylated gangliosides GT1b and GD1a. However, simple charge interactions of the peptide with the negative ganglioside do not appear to be a critical determinant of binding. Rather, an aggregation-suppressing amino acid composition and linker between the fluorophore and the peptide are required for optimum binding of the SBD to ganglioside-containing supported lipid bilayer surfaces, as well as for interaction with the membrane. Interestingly, the strength of interactions with ganglioside-containing artificial membranes is mirrored in the diffusion behavior by FCS on cell membranes, with stronger binders displaying similar characteristic diffusion profiles. Our findings indicate that for aggregation-prone peptides, aggregation occurs upon contact with the cell membrane, and rather than giving a stronger interaction with the membrane, aggregation is accompanied by weaker binding and complex diffusion profiles indicative of heterogeneous diffusion behavior in the probe population. Public Library of Science 2012-12-12 /pmc/articles/PMC3520979/ /pubmed/23251459 http://dx.doi.org/10.1371/journal.pone.0051222 Text en © 2012 Lauterbach et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lauterbach, Tim Manna, Manoj Ruhnow, Maria Wisantoso, Yudi Wang, Yaofeng Matysik, Artur Oglęcka, Kamila Mu, Yuguang Geifman-Shochat, Susana Wohland, Thorsten Kraut, Rachel Weak Glycolipid Binding of a Microdomain-Tracer Peptide Correlates with Aggregation and Slow Diffusion on Cell Membranes |
title | Weak Glycolipid Binding of a Microdomain-Tracer Peptide Correlates with Aggregation and Slow Diffusion on Cell Membranes |
title_full | Weak Glycolipid Binding of a Microdomain-Tracer Peptide Correlates with Aggregation and Slow Diffusion on Cell Membranes |
title_fullStr | Weak Glycolipid Binding of a Microdomain-Tracer Peptide Correlates with Aggregation and Slow Diffusion on Cell Membranes |
title_full_unstemmed | Weak Glycolipid Binding of a Microdomain-Tracer Peptide Correlates with Aggregation and Slow Diffusion on Cell Membranes |
title_short | Weak Glycolipid Binding of a Microdomain-Tracer Peptide Correlates with Aggregation and Slow Diffusion on Cell Membranes |
title_sort | weak glycolipid binding of a microdomain-tracer peptide correlates with aggregation and slow diffusion on cell membranes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3520979/ https://www.ncbi.nlm.nih.gov/pubmed/23251459 http://dx.doi.org/10.1371/journal.pone.0051222 |
work_keys_str_mv | AT lauterbachtim weakglycolipidbindingofamicrodomaintracerpeptidecorrelateswithaggregationandslowdiffusiononcellmembranes AT mannamanoj weakglycolipidbindingofamicrodomaintracerpeptidecorrelateswithaggregationandslowdiffusiononcellmembranes AT ruhnowmaria weakglycolipidbindingofamicrodomaintracerpeptidecorrelateswithaggregationandslowdiffusiononcellmembranes AT wisantosoyudi weakglycolipidbindingofamicrodomaintracerpeptidecorrelateswithaggregationandslowdiffusiononcellmembranes AT wangyaofeng weakglycolipidbindingofamicrodomaintracerpeptidecorrelateswithaggregationandslowdiffusiononcellmembranes AT matysikartur weakglycolipidbindingofamicrodomaintracerpeptidecorrelateswithaggregationandslowdiffusiononcellmembranes AT ogleckakamila weakglycolipidbindingofamicrodomaintracerpeptidecorrelateswithaggregationandslowdiffusiononcellmembranes AT muyuguang weakglycolipidbindingofamicrodomaintracerpeptidecorrelateswithaggregationandslowdiffusiononcellmembranes AT geifmanshochatsusana weakglycolipidbindingofamicrodomaintracerpeptidecorrelateswithaggregationandslowdiffusiononcellmembranes AT wohlandthorsten weakglycolipidbindingofamicrodomaintracerpeptidecorrelateswithaggregationandslowdiffusiononcellmembranes AT krautrachel weakglycolipidbindingofamicrodomaintracerpeptidecorrelateswithaggregationandslowdiffusiononcellmembranes |