Cargando…
Supervised maximum-likelihood weighting of composite protein networks for complex prediction
BACKGROUND: Protein complexes participate in many important cellular functions, so finding the set of existent complexes is essential for understanding the organization and regulation of processes in the cell. With the availability of large amounts of high-throughput protein-protein interaction (PPI...
Autores principales: | Yong, Chern Han, Liu, Guimei, Chua, Hon Nian, Wong, Limsoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521185/ https://www.ncbi.nlm.nih.gov/pubmed/23281936 http://dx.doi.org/10.1186/1752-0509-6-S2-S13 |
Ejemplares similares
-
Decomposing PPI networks for complex discovery
por: Liu, Guimei, et al.
Publicado: (2011) -
Using indirect protein interactions for the prediction of Gene Ontology functions
por: Chua, Hon Nian, et al.
Publicado: (2007) -
Discovery of small protein complexes from PPI networks with size-specific supervised weighting
por: Yong, Chern Han, et al.
Publicado: (2014) -
ILP-based maximum likelihood genome scaffolding
por: Lindsay, James, et al.
Publicado: (2014) -
Inference of reticulate evolutionary histories by maximum likelihood: the performance of information criteria
por: Park, Hyun Jung, et al.
Publicado: (2012)