Cargando…
Analysis of a comprehensive dataset of diversity generating retroelements generated by the program DiGReF
BACKGROUND: Diversity Generating Retroelements (DGRs) are genetic cassettes that can introduce tremendous diversity into a short, defined region of the genome. They achieve hypermutation through replacement of the variable region with a strongly mutated cDNA copy generated by the element-encoded rev...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521204/ https://www.ncbi.nlm.nih.gov/pubmed/22928525 http://dx.doi.org/10.1186/1471-2164-13-430 |
_version_ | 1782252904387706880 |
---|---|
author | Schillinger, Thomas Lisfi, Mohamed Chi, Jingyun Cullum, John Zingler, Nora |
author_facet | Schillinger, Thomas Lisfi, Mohamed Chi, Jingyun Cullum, John Zingler, Nora |
author_sort | Schillinger, Thomas |
collection | PubMed |
description | BACKGROUND: Diversity Generating Retroelements (DGRs) are genetic cassettes that can introduce tremendous diversity into a short, defined region of the genome. They achieve hypermutation through replacement of the variable region with a strongly mutated cDNA copy generated by the element-encoded reverse transcriptase. In contrast to “selfish” retroelements such as group II introns and retrotransposons, DGRs impart an advantage to their host by increasing its adaptive potential. DGRs were discovered in a bacteriophage, but since then additional examples have been identified in some bacterial genomes. RESULTS: Here we present the program DiGReF that allowed us to comprehensively screen available databases for DGRs. We identified 155 DGRs which are found in all major classes of bacteria, though exhibiting sporadic distribution across species. Phylogenetic analysis and sequence comparison showed that DGRs move between genomes by associating with various mobile elements such as phages, transposons and plasmids. The DGR cassettes exhibit high flexibility in the arrangement of their components and easily acquire additional paralogous target genes. Surprisingly, the genomic data alone provide new insights into the molecular mechanism of DGRs. Most notably, our data suggest that the template RNA is transcribed separately from the rest of the element. CONCLUSIONS: DiGReF is a valuable tool to detect DGRs in genome data. Its output allows comprehensive analysis of various aspects of DGR biology, thus deepening our understanding of the role DGRs play in prokaryotic genome plasticity, from the global down to the molecular level. |
format | Online Article Text |
id | pubmed-3521204 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35212042012-12-14 Analysis of a comprehensive dataset of diversity generating retroelements generated by the program DiGReF Schillinger, Thomas Lisfi, Mohamed Chi, Jingyun Cullum, John Zingler, Nora BMC Genomics Research Article BACKGROUND: Diversity Generating Retroelements (DGRs) are genetic cassettes that can introduce tremendous diversity into a short, defined region of the genome. They achieve hypermutation through replacement of the variable region with a strongly mutated cDNA copy generated by the element-encoded reverse transcriptase. In contrast to “selfish” retroelements such as group II introns and retrotransposons, DGRs impart an advantage to their host by increasing its adaptive potential. DGRs were discovered in a bacteriophage, but since then additional examples have been identified in some bacterial genomes. RESULTS: Here we present the program DiGReF that allowed us to comprehensively screen available databases for DGRs. We identified 155 DGRs which are found in all major classes of bacteria, though exhibiting sporadic distribution across species. Phylogenetic analysis and sequence comparison showed that DGRs move between genomes by associating with various mobile elements such as phages, transposons and plasmids. The DGR cassettes exhibit high flexibility in the arrangement of their components and easily acquire additional paralogous target genes. Surprisingly, the genomic data alone provide new insights into the molecular mechanism of DGRs. Most notably, our data suggest that the template RNA is transcribed separately from the rest of the element. CONCLUSIONS: DiGReF is a valuable tool to detect DGRs in genome data. Its output allows comprehensive analysis of various aspects of DGR biology, thus deepening our understanding of the role DGRs play in prokaryotic genome plasticity, from the global down to the molecular level. BioMed Central 2012-08-28 /pmc/articles/PMC3521204/ /pubmed/22928525 http://dx.doi.org/10.1186/1471-2164-13-430 Text en Copyright ©2012 Schillinger et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Schillinger, Thomas Lisfi, Mohamed Chi, Jingyun Cullum, John Zingler, Nora Analysis of a comprehensive dataset of diversity generating retroelements generated by the program DiGReF |
title | Analysis of a comprehensive dataset of diversity generating retroelements generated by the program DiGReF |
title_full | Analysis of a comprehensive dataset of diversity generating retroelements generated by the program DiGReF |
title_fullStr | Analysis of a comprehensive dataset of diversity generating retroelements generated by the program DiGReF |
title_full_unstemmed | Analysis of a comprehensive dataset of diversity generating retroelements generated by the program DiGReF |
title_short | Analysis of a comprehensive dataset of diversity generating retroelements generated by the program DiGReF |
title_sort | analysis of a comprehensive dataset of diversity generating retroelements generated by the program digref |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521204/ https://www.ncbi.nlm.nih.gov/pubmed/22928525 http://dx.doi.org/10.1186/1471-2164-13-430 |
work_keys_str_mv | AT schillingerthomas analysisofacomprehensivedatasetofdiversitygeneratingretroelementsgeneratedbytheprogramdigref AT lisfimohamed analysisofacomprehensivedatasetofdiversitygeneratingretroelementsgeneratedbytheprogramdigref AT chijingyun analysisofacomprehensivedatasetofdiversitygeneratingretroelementsgeneratedbytheprogramdigref AT cullumjohn analysisofacomprehensivedatasetofdiversitygeneratingretroelementsgeneratedbytheprogramdigref AT zinglernora analysisofacomprehensivedatasetofdiversitygeneratingretroelementsgeneratedbytheprogramdigref |