Cargando…

Meta-analytical biomarker search of EST expression data reveals three differentially expressed candidates

BACKGROUND: Researches have been conducted for the identification of differentially expressed genes (DEGs) by generating and mining of cDNA expressed sequence tags (ESTs) for more than a decade. Although the availability of public databases make possible the comprehensive mining of DEGs among the ES...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Timothy H, Chu, Lichieh J, Wang, Jian-Chiao, Chen, Ting-Wen, Tien, Yin-Jing, Lin, Wen-Chang, Ng, Wailap V
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521215/
https://www.ncbi.nlm.nih.gov/pubmed/23282184
http://dx.doi.org/10.1186/1471-2164-13-S7-S12
_version_ 1782252906887512064
author Wu, Timothy H
Chu, Lichieh J
Wang, Jian-Chiao
Chen, Ting-Wen
Tien, Yin-Jing
Lin, Wen-Chang
Ng, Wailap V
author_facet Wu, Timothy H
Chu, Lichieh J
Wang, Jian-Chiao
Chen, Ting-Wen
Tien, Yin-Jing
Lin, Wen-Chang
Ng, Wailap V
author_sort Wu, Timothy H
collection PubMed
description BACKGROUND: Researches have been conducted for the identification of differentially expressed genes (DEGs) by generating and mining of cDNA expressed sequence tags (ESTs) for more than a decade. Although the availability of public databases make possible the comprehensive mining of DEGs among the ESTs from multiple tissue types, existing studies usually employed statistics suitable only for two categories. Multi-class test has been developed to enable the finding of tissue specific genes, but subsequent search for cancer genes involves separate two-category test only on the ESTs of the tissue of interest. This constricts the amount of data used. On the other hand, simple pooling of cancer and normal genes from multiple tissue types runs the risk of Simpson's paradox. Here we presented a different approach which searched for multi-cancer DEG candidates by analyzing all pertinent ESTs in all categories and narrowing down the cancer biomarker candidates via integrative analysis with microarray data and selection of secretory and membrane protein genes as well as incorporation of network analysis. Finally, the differential expression patterns of three selected cancer biomarker candidates were confirmed by real-time qPCR analysis. RESULTS: Seven hundred and twenty three primary DEG candidates (p-value < 0.05 and lower bound of confidence interval of odds ratio ≧ 1.65) were selected from a curated EST database with the application of Cochran-Mantel-Haenszel statistic (CMH). GeneGO analysis results indicated this set as neoplasm enriched. Cross-examination with microarray data further narrowed the list down to 235 genes, among which 96 had membrane or secretory annotations. After examined the candidates in protein interaction network, public tissue expression databases, and literatures, we selected three genes for further evaluation by real-time qPCR with eight major normal and cancer tissues. The higher-than-normal tissue expression of COL3A1, DLG3, and RNF43 in some of the cancer tissues is in agreement with our in silico predictions. CONCLUSIONS: Searching digitized transcriptome using CMH enabled us to identify multi-cancer differentially expressed gene candidates. Our methodology demonstrated simultaneously analysis for cancer biomarkers of multiple tissue types with the EST data. With the revived interest in digitizing the transcriptomes by NGS, cancer biomarkers could be more precisely detected from the ESTs. The three candidates identified in this study, COL3A1, DLG3, and RNF43, are valuable targets for further evaluation with a larger sample size of normal and cancer tissue or serum samples.
format Online
Article
Text
id pubmed-3521215
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35212152012-12-14 Meta-analytical biomarker search of EST expression data reveals three differentially expressed candidates Wu, Timothy H Chu, Lichieh J Wang, Jian-Chiao Chen, Ting-Wen Tien, Yin-Jing Lin, Wen-Chang Ng, Wailap V BMC Genomics Proceedings BACKGROUND: Researches have been conducted for the identification of differentially expressed genes (DEGs) by generating and mining of cDNA expressed sequence tags (ESTs) for more than a decade. Although the availability of public databases make possible the comprehensive mining of DEGs among the ESTs from multiple tissue types, existing studies usually employed statistics suitable only for two categories. Multi-class test has been developed to enable the finding of tissue specific genes, but subsequent search for cancer genes involves separate two-category test only on the ESTs of the tissue of interest. This constricts the amount of data used. On the other hand, simple pooling of cancer and normal genes from multiple tissue types runs the risk of Simpson's paradox. Here we presented a different approach which searched for multi-cancer DEG candidates by analyzing all pertinent ESTs in all categories and narrowing down the cancer biomarker candidates via integrative analysis with microarray data and selection of secretory and membrane protein genes as well as incorporation of network analysis. Finally, the differential expression patterns of three selected cancer biomarker candidates were confirmed by real-time qPCR analysis. RESULTS: Seven hundred and twenty three primary DEG candidates (p-value < 0.05 and lower bound of confidence interval of odds ratio ≧ 1.65) were selected from a curated EST database with the application of Cochran-Mantel-Haenszel statistic (CMH). GeneGO analysis results indicated this set as neoplasm enriched. Cross-examination with microarray data further narrowed the list down to 235 genes, among which 96 had membrane or secretory annotations. After examined the candidates in protein interaction network, public tissue expression databases, and literatures, we selected three genes for further evaluation by real-time qPCR with eight major normal and cancer tissues. The higher-than-normal tissue expression of COL3A1, DLG3, and RNF43 in some of the cancer tissues is in agreement with our in silico predictions. CONCLUSIONS: Searching digitized transcriptome using CMH enabled us to identify multi-cancer differentially expressed gene candidates. Our methodology demonstrated simultaneously analysis for cancer biomarkers of multiple tissue types with the EST data. With the revived interest in digitizing the transcriptomes by NGS, cancer biomarkers could be more precisely detected from the ESTs. The three candidates identified in this study, COL3A1, DLG3, and RNF43, are valuable targets for further evaluation with a larger sample size of normal and cancer tissue or serum samples. BioMed Central 2012-12-07 /pmc/articles/PMC3521215/ /pubmed/23282184 http://dx.doi.org/10.1186/1471-2164-13-S7-S12 Text en Copyright ©2012 Wu et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Proceedings
Wu, Timothy H
Chu, Lichieh J
Wang, Jian-Chiao
Chen, Ting-Wen
Tien, Yin-Jing
Lin, Wen-Chang
Ng, Wailap V
Meta-analytical biomarker search of EST expression data reveals three differentially expressed candidates
title Meta-analytical biomarker search of EST expression data reveals three differentially expressed candidates
title_full Meta-analytical biomarker search of EST expression data reveals three differentially expressed candidates
title_fullStr Meta-analytical biomarker search of EST expression data reveals three differentially expressed candidates
title_full_unstemmed Meta-analytical biomarker search of EST expression data reveals three differentially expressed candidates
title_short Meta-analytical biomarker search of EST expression data reveals three differentially expressed candidates
title_sort meta-analytical biomarker search of est expression data reveals three differentially expressed candidates
topic Proceedings
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521215/
https://www.ncbi.nlm.nih.gov/pubmed/23282184
http://dx.doi.org/10.1186/1471-2164-13-S7-S12
work_keys_str_mv AT wutimothyh metaanalyticalbiomarkersearchofestexpressiondatarevealsthreedifferentiallyexpressedcandidates
AT chulichiehj metaanalyticalbiomarkersearchofestexpressiondatarevealsthreedifferentiallyexpressedcandidates
AT wangjianchiao metaanalyticalbiomarkersearchofestexpressiondatarevealsthreedifferentiallyexpressedcandidates
AT chentingwen metaanalyticalbiomarkersearchofestexpressiondatarevealsthreedifferentiallyexpressedcandidates
AT tienyinjing metaanalyticalbiomarkersearchofestexpressiondatarevealsthreedifferentiallyexpressedcandidates
AT linwenchang metaanalyticalbiomarkersearchofestexpressiondatarevealsthreedifferentiallyexpressedcandidates
AT ngwailapv metaanalyticalbiomarkersearchofestexpressiondatarevealsthreedifferentiallyexpressedcandidates