Cargando…

The microtubule-binding protein Cep170 promotes the targeting of the kinesin-13 depolymerase Kif2b to the mitotic spindle

Microtubule dynamics are essential throughout mitosis to ensure correct chromosome segregation. Microtubule depolymerization is controlled in part by microtubule depolymerases, including the kinesin-13 family of proteins. In humans, there are three closely related kinesin-13 isoforms (Kif2a, Kif2b,...

Descripción completa

Detalles Bibliográficos
Autores principales: Welburn, Julie P. I., Cheeseman, Iain M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521686/
https://www.ncbi.nlm.nih.gov/pubmed/23087211
http://dx.doi.org/10.1091/mbc.E12-03-0214
Descripción
Sumario:Microtubule dynamics are essential throughout mitosis to ensure correct chromosome segregation. Microtubule depolymerization is controlled in part by microtubule depolymerases, including the kinesin-13 family of proteins. In humans, there are three closely related kinesin-13 isoforms (Kif2a, Kif2b, and Kif2c/MCAK), which are highly conserved in their primary sequences but display distinct localization and nonoverlapping functions. Here we demonstrate that the N-terminus is a primary determinant of kinesin-13 localization. However, we also find that differences in the C-terminus alter the properties of kinesin-13, in part by facilitating unique protein–protein interactions. We identify the spindle-localized proteins Cep170 and Cep170R (KIAA0284) as specifically associating with Kif2b. Cep170 binds to microtubules in vitro and provides Kif2b with a second microtubule-binding site to target it to the spindle. Thus the intrinsic properties of kinesin-13s and extrinsic factors such as their associated proteins result in the diversity and specificity within the kinesin-13 depolymerase family.