Cargando…
Protective effect of Launaea procumbens (L.) on lungs against CCl(4)-induced pulmonary damages in rat
BACKGROUND: Launaea procumbens (L.) is traditionally used in the treatment of various human ailments including pulmonary damages. The present study was arranged to evaluate the role of Launaea procumbens methanol extract (LME) against carbon tetrachloride (CCl(4)) induced oxidative pulmonary damages...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522065/ https://www.ncbi.nlm.nih.gov/pubmed/22909101 http://dx.doi.org/10.1186/1472-6882-12-133 |
_version_ | 1782253038622212096 |
---|---|
author | Khan, Rahmat Ali |
author_facet | Khan, Rahmat Ali |
author_sort | Khan, Rahmat Ali |
collection | PubMed |
description | BACKGROUND: Launaea procumbens (L.) is traditionally used in the treatment of various human ailments including pulmonary damages. The present study was arranged to evaluate the role of Launaea procumbens methanol extract (LME) against carbon tetrachloride (CCl(4)) induced oxidative pulmonary damages in rat. METHODS: 36 Sprague–Dawley male rats (170-180 g) were randomly divided into 06 groups. After a week of acclamization, group I was remained untreated while group II was given olive oil intraperitoneally (i.p.) and dimethyl sulfoxide (DMSO) orally, groups III, IV, V and VI were administered CCl(4), 3 ml/kg body weight (30% in olive oil i.p.). Groups IV, V were treated with 100 mg/kg, 200 mg/kg of LME whereas group VI was administered with 50 mg/kg body weight of rutin (RT) after 48 h of CCl(4) treatment for four weeks. Antioxidant profile in lungs were evaluated by estimating the activities of antioxidant enzymes; catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione reductase (GSR), glutathione peroxidase (GSH-Px), quinone reductase (QR) and reduced glutathione (GSH). CCl(4)-induced lipid peroxidation was determined by measuring the level of thiobarbituric acid reactive substances (TBARS) with conjugation of deoxyribonucleic acid (DNA) damages, argyrophilic nucleolar organizer regions (AgNORs) counts and histopathology. RESULTS: Administration of CCl(4) for 6 weeks significantly (p < 0.01) reduced the activities of antioxidant enzymes and GSH concentration while increased TBARS contents and DNA damages in lung samples. Co-treatment of LME and rutin restored the activities of antioxidant enzymes and GSH contents. Changes in TBARS concentration and DNA fragmentation were significantly (p < 0.01) decreased with the treatment of LME and rutin in lung. Changes induced with CCl(4) in histopathology of lungs were significantly reduced with co-treatment of LME and rutin. CONCLUSION: Results of present study revealed that LME could protect the lung tissues against CCl(4)-induced oxidative stress possibly by improving the antioxidant defence system. |
format | Online Article Text |
id | pubmed-3522065 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35220652012-12-14 Protective effect of Launaea procumbens (L.) on lungs against CCl(4)-induced pulmonary damages in rat Khan, Rahmat Ali BMC Complement Altern Med Research Article BACKGROUND: Launaea procumbens (L.) is traditionally used in the treatment of various human ailments including pulmonary damages. The present study was arranged to evaluate the role of Launaea procumbens methanol extract (LME) against carbon tetrachloride (CCl(4)) induced oxidative pulmonary damages in rat. METHODS: 36 Sprague–Dawley male rats (170-180 g) were randomly divided into 06 groups. After a week of acclamization, group I was remained untreated while group II was given olive oil intraperitoneally (i.p.) and dimethyl sulfoxide (DMSO) orally, groups III, IV, V and VI were administered CCl(4), 3 ml/kg body weight (30% in olive oil i.p.). Groups IV, V were treated with 100 mg/kg, 200 mg/kg of LME whereas group VI was administered with 50 mg/kg body weight of rutin (RT) after 48 h of CCl(4) treatment for four weeks. Antioxidant profile in lungs were evaluated by estimating the activities of antioxidant enzymes; catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione reductase (GSR), glutathione peroxidase (GSH-Px), quinone reductase (QR) and reduced glutathione (GSH). CCl(4)-induced lipid peroxidation was determined by measuring the level of thiobarbituric acid reactive substances (TBARS) with conjugation of deoxyribonucleic acid (DNA) damages, argyrophilic nucleolar organizer regions (AgNORs) counts and histopathology. RESULTS: Administration of CCl(4) for 6 weeks significantly (p < 0.01) reduced the activities of antioxidant enzymes and GSH concentration while increased TBARS contents and DNA damages in lung samples. Co-treatment of LME and rutin restored the activities of antioxidant enzymes and GSH contents. Changes in TBARS concentration and DNA fragmentation were significantly (p < 0.01) decreased with the treatment of LME and rutin in lung. Changes induced with CCl(4) in histopathology of lungs were significantly reduced with co-treatment of LME and rutin. CONCLUSION: Results of present study revealed that LME could protect the lung tissues against CCl(4)-induced oxidative stress possibly by improving the antioxidant defence system. BioMed Central 2012-08-21 /pmc/articles/PMC3522065/ /pubmed/22909101 http://dx.doi.org/10.1186/1472-6882-12-133 Text en Copyright ©2012 Khan; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Khan, Rahmat Ali Protective effect of Launaea procumbens (L.) on lungs against CCl(4)-induced pulmonary damages in rat |
title | Protective effect of Launaea procumbens (L.) on lungs against CCl(4)-induced pulmonary damages in rat |
title_full | Protective effect of Launaea procumbens (L.) on lungs against CCl(4)-induced pulmonary damages in rat |
title_fullStr | Protective effect of Launaea procumbens (L.) on lungs against CCl(4)-induced pulmonary damages in rat |
title_full_unstemmed | Protective effect of Launaea procumbens (L.) on lungs against CCl(4)-induced pulmonary damages in rat |
title_short | Protective effect of Launaea procumbens (L.) on lungs against CCl(4)-induced pulmonary damages in rat |
title_sort | protective effect of launaea procumbens (l.) on lungs against ccl(4)-induced pulmonary damages in rat |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522065/ https://www.ncbi.nlm.nih.gov/pubmed/22909101 http://dx.doi.org/10.1186/1472-6882-12-133 |
work_keys_str_mv | AT khanrahmatali protectiveeffectoflaunaeaprocumbenslonlungsagainstccl4inducedpulmonarydamagesinrat |