Cargando…

Analysis of grey matter in thalamus and basal ganglia based on EEG α3/α2 frequency ratio reveals specific changes in subjects with mild cognitive impairment

GM (grey matter) changes of thalamus and basal ganglia have been demonstrated to be involved in AD (Alzheimer's disease). Moreover, the increase of a specific EEG (electroencephalogram) marker, α3/α2, have been associated with AD-converters subjects with MCI (mild cognitive impairment). To stud...

Descripción completa

Detalles Bibliográficos
Autores principales: Moretti, Davide V, Paternicò, Donata, Binetti, Giuliano, Zanetti, Orazio, Frisoni, Giovanni B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Neurochemistry 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522208/
https://www.ncbi.nlm.nih.gov/pubmed/23126239
http://dx.doi.org/10.1042/AN20120058
Descripción
Sumario:GM (grey matter) changes of thalamus and basal ganglia have been demonstrated to be involved in AD (Alzheimer's disease). Moreover, the increase of a specific EEG (electroencephalogram) marker, α3/α2, have been associated with AD-converters subjects with MCI (mild cognitive impairment). To study the association of prognostic EEG markers with specific GM changes of thalamus and basal ganglia in subjects with MCI to detect biomarkers (morpho-physiological) early predictive of AD and non-AD dementia. Seventy-four adult subjects with MCI underwent EEG recording and high-resolution 3D MRI (three-dimensional magnetic resonance imaging). The α3/α2 ratio was computed for each subject. Three groups were obtained according to increasing tertile values of α3/α2 ratio. GM density differences between groups were investigated using a VBM (voxel-based morphometry) technique. Subjects with higher α3/α2 ratios when compared with subjects with lower and middle α3/α2 ratios showed minor atrophy in the ventral stream of basal ganglia (head of caudate nuclei and accumbens nuclei bilaterally) and of the pulvinar nuclei in the thalamus; The integrated analysis of EEG and morpho-structural markers could be useful in the comprehension of anatomo-physiological underpinning of the MCI entity.