Cargando…
A specialized ODE integrator for the efficient computation of parameter sensitivities
BACKGROUND: Dynamic mathematical models in the form of systems of ordinary differential equations (ODEs) play an important role in systems biology. For any sufficiently complex model, the speed and accuracy of solving the ODEs by numerical integration is critical. This applies especially to systems...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522561/ https://www.ncbi.nlm.nih.gov/pubmed/22607742 http://dx.doi.org/10.1186/1752-0509-6-46 |
_version_ | 1782253087844466688 |
---|---|
author | Gonnet, Pedro Dimopoulos, Sotiris Widmer, Lukas Stelling, Jörg |
author_facet | Gonnet, Pedro Dimopoulos, Sotiris Widmer, Lukas Stelling, Jörg |
author_sort | Gonnet, Pedro |
collection | PubMed |
description | BACKGROUND: Dynamic mathematical models in the form of systems of ordinary differential equations (ODEs) play an important role in systems biology. For any sufficiently complex model, the speed and accuracy of solving the ODEs by numerical integration is critical. This applies especially to systems identification problems where the parameter sensitivities must be integrated alongside the system variables. Although several very good general purpose ODE solvers exist, few of them compute the parameter sensitivities automatically. RESULTS: We present a novel integration algorithm that is based on second derivatives and contains other unique features such as improved error estimates. These features allow the integrator to take larger time steps than other methods. In practical applications, i.e. systems biology models of different sizes and behaviors, the method competes well with established integrators in solving the system equations, and it outperforms them significantly when local parameter sensitivities are evaluated. For ease-of-use, the solver is embedded in a framework that automatically generates the integrator input from an SBML description of the system of interest. CONCLUSIONS: For future applications, comparatively ‘cheap’ parameter sensitivities will enable advances in solving large, otherwise computationally expensive parameter estimation and optimization problems. More generally, we argue that substantially better computational performance can be achieved by exploiting characteristics specific to the problem domain; elements of our methods such as the error estimation could find broader use in other, more general numerical algorithms. |
format | Online Article Text |
id | pubmed-3522561 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35225612012-12-21 A specialized ODE integrator for the efficient computation of parameter sensitivities Gonnet, Pedro Dimopoulos, Sotiris Widmer, Lukas Stelling, Jörg BMC Syst Biol Methodology Article BACKGROUND: Dynamic mathematical models in the form of systems of ordinary differential equations (ODEs) play an important role in systems biology. For any sufficiently complex model, the speed and accuracy of solving the ODEs by numerical integration is critical. This applies especially to systems identification problems where the parameter sensitivities must be integrated alongside the system variables. Although several very good general purpose ODE solvers exist, few of them compute the parameter sensitivities automatically. RESULTS: We present a novel integration algorithm that is based on second derivatives and contains other unique features such as improved error estimates. These features allow the integrator to take larger time steps than other methods. In practical applications, i.e. systems biology models of different sizes and behaviors, the method competes well with established integrators in solving the system equations, and it outperforms them significantly when local parameter sensitivities are evaluated. For ease-of-use, the solver is embedded in a framework that automatically generates the integrator input from an SBML description of the system of interest. CONCLUSIONS: For future applications, comparatively ‘cheap’ parameter sensitivities will enable advances in solving large, otherwise computationally expensive parameter estimation and optimization problems. More generally, we argue that substantially better computational performance can be achieved by exploiting characteristics specific to the problem domain; elements of our methods such as the error estimation could find broader use in other, more general numerical algorithms. BioMed Central 2012-05-20 /pmc/articles/PMC3522561/ /pubmed/22607742 http://dx.doi.org/10.1186/1752-0509-6-46 Text en Copyright ©2012 Gonnet et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Gonnet, Pedro Dimopoulos, Sotiris Widmer, Lukas Stelling, Jörg A specialized ODE integrator for the efficient computation of parameter sensitivities |
title | A specialized ODE integrator for the efficient computation of parameter sensitivities |
title_full | A specialized ODE integrator for the efficient computation of parameter sensitivities |
title_fullStr | A specialized ODE integrator for the efficient computation of parameter sensitivities |
title_full_unstemmed | A specialized ODE integrator for the efficient computation of parameter sensitivities |
title_short | A specialized ODE integrator for the efficient computation of parameter sensitivities |
title_sort | specialized ode integrator for the efficient computation of parameter sensitivities |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522561/ https://www.ncbi.nlm.nih.gov/pubmed/22607742 http://dx.doi.org/10.1186/1752-0509-6-46 |
work_keys_str_mv | AT gonnetpedro aspecializedodeintegratorfortheefficientcomputationofparametersensitivities AT dimopoulossotiris aspecializedodeintegratorfortheefficientcomputationofparametersensitivities AT widmerlukas aspecializedodeintegratorfortheefficientcomputationofparametersensitivities AT stellingjorg aspecializedodeintegratorfortheefficientcomputationofparametersensitivities AT gonnetpedro specializedodeintegratorfortheefficientcomputationofparametersensitivities AT dimopoulossotiris specializedodeintegratorfortheefficientcomputationofparametersensitivities AT widmerlukas specializedodeintegratorfortheefficientcomputationofparametersensitivities AT stellingjorg specializedodeintegratorfortheefficientcomputationofparametersensitivities |