Cargando…
Differentiating Inbred Mouse Strains from Each Other and Those with Single Gene Mutations Using Hair Proteomics
Mutant laboratory mice with distinctive hair phenotypes are useful for identifying genes responsible for hair diseases. The work presented here demonstrates that shotgun proteomic profiling can distinguish hair shafts from different inbred mouse strains. For this purpose, analyzing the total hair sh...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522583/ https://www.ncbi.nlm.nih.gov/pubmed/23251662 http://dx.doi.org/10.1371/journal.pone.0051956 |
_version_ | 1782253092093296640 |
---|---|
author | Rice, Robert H. Bradshaw, Katie M. Durbin-Johnson, Blythe P. Rocke, David M. Eigenheer, Richard A. Phinney, Brett S. Sundberg, John P. |
author_facet | Rice, Robert H. Bradshaw, Katie M. Durbin-Johnson, Blythe P. Rocke, David M. Eigenheer, Richard A. Phinney, Brett S. Sundberg, John P. |
author_sort | Rice, Robert H. |
collection | PubMed |
description | Mutant laboratory mice with distinctive hair phenotypes are useful for identifying genes responsible for hair diseases. The work presented here demonstrates that shotgun proteomic profiling can distinguish hair shafts from different inbred mouse strains. For this purpose, analyzing the total hair shaft provided better discrimination than analyzing the isolated solubilized and particulate (cross-linked) fractions. Over 100 proteins exhibited significant differences among the 11 strains and 5 mutant stocks across the wide spectrum of strains surveyed. Effects on the profile of single gene mutations causing hair shaft defects were profound. Since the hair shaft provides a discrete sampling of the species proteome, with constituents serving important functions in epidermal appendages and throughout the body, this work provides a foundation for non-invasive diagnosis of genetic diseases of hair and perhaps other tissues. |
format | Online Article Text |
id | pubmed-3522583 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35225832012-12-18 Differentiating Inbred Mouse Strains from Each Other and Those with Single Gene Mutations Using Hair Proteomics Rice, Robert H. Bradshaw, Katie M. Durbin-Johnson, Blythe P. Rocke, David M. Eigenheer, Richard A. Phinney, Brett S. Sundberg, John P. PLoS One Research Article Mutant laboratory mice with distinctive hair phenotypes are useful for identifying genes responsible for hair diseases. The work presented here demonstrates that shotgun proteomic profiling can distinguish hair shafts from different inbred mouse strains. For this purpose, analyzing the total hair shaft provided better discrimination than analyzing the isolated solubilized and particulate (cross-linked) fractions. Over 100 proteins exhibited significant differences among the 11 strains and 5 mutant stocks across the wide spectrum of strains surveyed. Effects on the profile of single gene mutations causing hair shaft defects were profound. Since the hair shaft provides a discrete sampling of the species proteome, with constituents serving important functions in epidermal appendages and throughout the body, this work provides a foundation for non-invasive diagnosis of genetic diseases of hair and perhaps other tissues. Public Library of Science 2012-12-14 /pmc/articles/PMC3522583/ /pubmed/23251662 http://dx.doi.org/10.1371/journal.pone.0051956 Text en © 2012 Rice et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Rice, Robert H. Bradshaw, Katie M. Durbin-Johnson, Blythe P. Rocke, David M. Eigenheer, Richard A. Phinney, Brett S. Sundberg, John P. Differentiating Inbred Mouse Strains from Each Other and Those with Single Gene Mutations Using Hair Proteomics |
title | Differentiating Inbred Mouse Strains from Each Other and Those with Single Gene Mutations Using Hair Proteomics |
title_full | Differentiating Inbred Mouse Strains from Each Other and Those with Single Gene Mutations Using Hair Proteomics |
title_fullStr | Differentiating Inbred Mouse Strains from Each Other and Those with Single Gene Mutations Using Hair Proteomics |
title_full_unstemmed | Differentiating Inbred Mouse Strains from Each Other and Those with Single Gene Mutations Using Hair Proteomics |
title_short | Differentiating Inbred Mouse Strains from Each Other and Those with Single Gene Mutations Using Hair Proteomics |
title_sort | differentiating inbred mouse strains from each other and those with single gene mutations using hair proteomics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522583/ https://www.ncbi.nlm.nih.gov/pubmed/23251662 http://dx.doi.org/10.1371/journal.pone.0051956 |
work_keys_str_mv | AT riceroberth differentiatinginbredmousestrainsfromeachotherandthosewithsinglegenemutationsusinghairproteomics AT bradshawkatiem differentiatinginbredmousestrainsfromeachotherandthosewithsinglegenemutationsusinghairproteomics AT durbinjohnsonblythep differentiatinginbredmousestrainsfromeachotherandthosewithsinglegenemutationsusinghairproteomics AT rockedavidm differentiatinginbredmousestrainsfromeachotherandthosewithsinglegenemutationsusinghairproteomics AT eigenheerricharda differentiatinginbredmousestrainsfromeachotherandthosewithsinglegenemutationsusinghairproteomics AT phinneybretts differentiatinginbredmousestrainsfromeachotherandthosewithsinglegenemutationsusinghairproteomics AT sundbergjohnp differentiatinginbredmousestrainsfromeachotherandthosewithsinglegenemutationsusinghairproteomics |