Cargando…
Intrinsic Migratory Properties of Cultured Schwann Cells Based on Single-Cell Migration Assay
The migration of Schwann cells is critical for development of peripheral nervous system and is essential for regeneration and remyelination after nerve injury. Although several factors have been identified to regulate Schwann cell migration, intrinsic migratory properties of Schwann cells remain elu...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522601/ https://www.ncbi.nlm.nih.gov/pubmed/23251634 http://dx.doi.org/10.1371/journal.pone.0051824 |
_version_ | 1782253096148140032 |
---|---|
author | Wang, Ying Teng, Hong-Lin Huang, Zhi-hui |
author_facet | Wang, Ying Teng, Hong-Lin Huang, Zhi-hui |
author_sort | Wang, Ying |
collection | PubMed |
description | The migration of Schwann cells is critical for development of peripheral nervous system and is essential for regeneration and remyelination after nerve injury. Although several factors have been identified to regulate Schwann cell migration, intrinsic migratory properties of Schwann cells remain elusive. In this study, based on time-lapse imaging of single isolated Schwann cells, we examined the intrinsic migratory properties of Schwann cells and the molecular cytoskeletal machinery of soma translocation during migration. We found that cultured Schwann cells displayed three motile phenotypes, which could transform into each other spontaneously during their migration. Local disruption of F-actin polymerization at leading front by a Cytochalasin D or Latrunculin A gradient induced collapse of leading front, and then inhibited soma translocation. Moreover, in migrating Schwann cells, myosin II activity displayed a polarized distribution, with the leading process exhibiting higher expression than the soma and trailing process. Decreasing this front-to-rear difference of myosin II activity by frontal application of a ML-7 or BDM (myosin II inhibitors) gradient induced the collapse of leading front and reversed soma translocation, whereas, increasing this front-to-rear difference of myosin II activity by rear application of a ML-7 or BDM gradient or frontal application of a Caly (myosin II activator) gradient accelerated soma translocation. Taken together, these results suggest that during migration, Schwann cells display malleable motile phenotypes and the extension of leading front dependent on F-actin polymerization pulls soma forward translocation mediated by myosin II activity. |
format | Online Article Text |
id | pubmed-3522601 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35226012012-12-18 Intrinsic Migratory Properties of Cultured Schwann Cells Based on Single-Cell Migration Assay Wang, Ying Teng, Hong-Lin Huang, Zhi-hui PLoS One Research Article The migration of Schwann cells is critical for development of peripheral nervous system and is essential for regeneration and remyelination after nerve injury. Although several factors have been identified to regulate Schwann cell migration, intrinsic migratory properties of Schwann cells remain elusive. In this study, based on time-lapse imaging of single isolated Schwann cells, we examined the intrinsic migratory properties of Schwann cells and the molecular cytoskeletal machinery of soma translocation during migration. We found that cultured Schwann cells displayed three motile phenotypes, which could transform into each other spontaneously during their migration. Local disruption of F-actin polymerization at leading front by a Cytochalasin D or Latrunculin A gradient induced collapse of leading front, and then inhibited soma translocation. Moreover, in migrating Schwann cells, myosin II activity displayed a polarized distribution, with the leading process exhibiting higher expression than the soma and trailing process. Decreasing this front-to-rear difference of myosin II activity by frontal application of a ML-7 or BDM (myosin II inhibitors) gradient induced the collapse of leading front and reversed soma translocation, whereas, increasing this front-to-rear difference of myosin II activity by rear application of a ML-7 or BDM gradient or frontal application of a Caly (myosin II activator) gradient accelerated soma translocation. Taken together, these results suggest that during migration, Schwann cells display malleable motile phenotypes and the extension of leading front dependent on F-actin polymerization pulls soma forward translocation mediated by myosin II activity. Public Library of Science 2012-12-14 /pmc/articles/PMC3522601/ /pubmed/23251634 http://dx.doi.org/10.1371/journal.pone.0051824 Text en © 2012 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Wang, Ying Teng, Hong-Lin Huang, Zhi-hui Intrinsic Migratory Properties of Cultured Schwann Cells Based on Single-Cell Migration Assay |
title | Intrinsic Migratory Properties of Cultured Schwann Cells Based on Single-Cell Migration Assay |
title_full | Intrinsic Migratory Properties of Cultured Schwann Cells Based on Single-Cell Migration Assay |
title_fullStr | Intrinsic Migratory Properties of Cultured Schwann Cells Based on Single-Cell Migration Assay |
title_full_unstemmed | Intrinsic Migratory Properties of Cultured Schwann Cells Based on Single-Cell Migration Assay |
title_short | Intrinsic Migratory Properties of Cultured Schwann Cells Based on Single-Cell Migration Assay |
title_sort | intrinsic migratory properties of cultured schwann cells based on single-cell migration assay |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522601/ https://www.ncbi.nlm.nih.gov/pubmed/23251634 http://dx.doi.org/10.1371/journal.pone.0051824 |
work_keys_str_mv | AT wangying intrinsicmigratorypropertiesofculturedschwanncellsbasedonsinglecellmigrationassay AT tenghonglin intrinsicmigratorypropertiesofculturedschwanncellsbasedonsinglecellmigrationassay AT huangzhihui intrinsicmigratorypropertiesofculturedschwanncellsbasedonsinglecellmigrationassay |