Cargando…

Full-Length Minor Ampullate Spidroin Gene Sequence

Spider silk includes seven protein based fibers and glue-like substances produced by glands in the spider's abdomen. Minor ampullate silk is used to make the auxiliary spiral of the orb-web and also for wrapping prey, has a high tensile strength and does not supercontract in water. So far, only...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Gefei, Liu, Xiangqin, Zhang, Yunlong, Lin, Senzhu, Yang, Zijiang, Johansson, Jan, Rising, Anna, Meng, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522626/
https://www.ncbi.nlm.nih.gov/pubmed/23251707
http://dx.doi.org/10.1371/journal.pone.0052293
Descripción
Sumario:Spider silk includes seven protein based fibers and glue-like substances produced by glands in the spider's abdomen. Minor ampullate silk is used to make the auxiliary spiral of the orb-web and also for wrapping prey, has a high tensile strength and does not supercontract in water. So far, only partial cDNA sequences have been obtained for minor ampullate spidroins (MiSps). Here we describe the first MiSp full-length gene sequence from the spider species Araneus ventricosus, using a multidimensional PCR approach. Comparative analysis of the sequence reveals regulatory elements, as well as unique spidroin gene and protein architecture including the presence of an unusually large intron. The spliced full-length transcript of MiSp gene is 5440 bp in size and encodes 1766 amino acid residues organized into conserved nonrepetitive N- and C-terminal domains and a central predominantly repetitive region composed of four units that are iterated in a non regular manner. The repeats are more conserved within A. ventricosus MiSp than compared to repeats from homologous proteins, and are interrupted by two nonrepetitive spacer regions, which have 100% identity even at the nucleotide level.