Cargando…
Analysis of Genome-Wide Association Studies with Multiple Outcomes Using Penalization
Genome-wide association studies have been extensively conducted, searching for markers for biologically meaningful outcomes and phenotypes. Penalization methods have been adopted in the analysis of the joint effects of a large number of SNPs (single nucleotide polymorphisms) and marker identificatio...
Autores principales: | Liu, Jin, Huang, Jian, Ma, Shuangge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522680/ https://www.ncbi.nlm.nih.gov/pubmed/23272092 http://dx.doi.org/10.1371/journal.pone.0051198 |
Ejemplares similares
-
Penalized multivariate linear mixed model for longitudinal genome-wide association studies
por: Liu, Jin, et al.
Publicado: (2014) -
Regularized regression method for genome-wide association studies
por: Liu, Jin, et al.
Publicado: (2011) -
Integrative prescreening in analysis of multiple cancer genomic studies
por: Song, Rui, et al.
Publicado: (2012) -
Genome-wide Analysis of Large-scale Longitudinal Outcomes using Penalization —GALLOP algorithm
por: Sikorska, Karolina, et al.
Publicado: (2018) -
Identification of genes associated with multiple cancers via integrative analysis
por: Ma, Shuangge, et al.
Publicado: (2009)