Cargando…
Capacity-Building and Clinical Competence in Infectious Disease in Uganda: A Mixed-Design Study with Pre/Post and Cluster-Randomized Trial Components
TRIAL DESIGN: Best practices for training mid-level practitioners (MLPs) to improve global health-services are not well-characterized. Two hypotheses were: 1) Integrated Management of Infectious Disease (IMID) training would improve clinical competence as tested with a single arm, pre-post design, a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522731/ https://www.ncbi.nlm.nih.gov/pubmed/23272097 http://dx.doi.org/10.1371/journal.pone.0051319 |
Sumario: | TRIAL DESIGN: Best practices for training mid-level practitioners (MLPs) to improve global health-services are not well-characterized. Two hypotheses were: 1) Integrated Management of Infectious Disease (IMID) training would improve clinical competence as tested with a single arm, pre-post design, and 2) on-site support (OSS) would yield additional improvements as tested with a cluster-randomized trial. METHODS: Thirty-six Ugandan health facilities (randomized 1∶1 to parallel OSS and control arms) enrolled two MLPs each. All MLPs participated in IMID (3-week core course, two 1-week boost sessions, distance learning). After the 3-week course, OSS-arm trainees participated in monthly OSS. Twelve written case scenarios tested clinical competencies in HIV/AIDS, tuberculosis, malaria, and other infectious diseases. Each participant completed different randomly-assigned blocks of four scenarios before IMID (t0), after 3-week course (t1), and after second boost course (t2, 24 weeks after t1). Scoring guides were harmonized with IMID content and Ugandan national policy. Score analyses used a linear mixed-effects model. The primary outcome measure was longitudinal change in scenario scores. RESULTS: Scores were available for 856 scenarios. Mean correct scores at t0, t1, and t2 were 39.3%, 49.1%, and 49.6%, respectively. Mean score increases (95% CI, p-value) for t0–t1 (pre-post period) and t1–t2 (parallel-arm period) were 12.1 ((9.6, 14.6), p<0.001) and −0.6 ((−3.1, +1.9), p = 0.647) percent for OSS arm and 7.5 ((5.0, 10.0), p<0.001) and 1.6 ((−1.0, +4.1), p = 0.225) for control arm. The estimated mean difference in t1 to t2 score change, comparing arm A (participated in OSS) vs. arm B was −2.2 ((−5.8, +1.4), p = 0.237). From t0–t2, mean scores increased for all 12 scenarios. CONCLUSIONS: Clinical competence increased significantly after a 3-week core course; improvement persisted for 24 weeks. No additional impact of OSS was observed. Data on clinical practice, facility-level performance and health outcomes will complete assessment of overall impact of IMID and OSS. TRIAL REGISTRATION: ClinicalTrials.gov NCT01190540 |
---|