Cargando…

Effect of Piper sarmentosum Extract on the Cardiovascular System of Diabetic Sprague-Dawley Rats: Electron Microscopic Study

Although Piper sarmentosum (PS) is known to possess the antidiabetic properties, its efficacy towards diabetic cardiovascular tissues is still obscured. The present study aimed to observe the electron microscopic changes on the cardiac tissue and proximal aorta of experimental rats treated with PS e...

Descripción completa

Detalles Bibliográficos
Autores principales: Thent, Zar Chi, Seong Lin, Teoh, Das, Srijit, Zakaria, Zaiton
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523161/
https://www.ncbi.nlm.nih.gov/pubmed/23304208
http://dx.doi.org/10.1155/2012/628750
Descripción
Sumario:Although Piper sarmentosum (PS) is known to possess the antidiabetic properties, its efficacy towards diabetic cardiovascular tissues is still obscured. The present study aimed to observe the electron microscopic changes on the cardiac tissue and proximal aorta of experimental rats treated with PS extract. Thirty-two male Sprague-Dawley rats were divided into four groups: untreated control group (C), PS-treated control group (CTx), untreated diabetic group (D), and PS-treated diabetic group (DTx). Intramuscular injection of streptozotocin (STZ, 50 mg/kg body weight) was given to induce diabetes. Following 28 days of diabetes induction, PS extract (0.125 g/kg body weight) was administered orally for 28 days. Body weight, fasting blood glucose, and urine glucose levels were measured at 4-week interval. At the end of the study, cardiac tissues and the aorta were viewed under transmission electron microscope (TEM). DTx group showed increase in body weight and decrease in fasting blood glucose and urine glucose level compared to the D group. Under TEM study, DTx group showed lesser ultrastructural degenerative changes in the cardiac tissues and the proximal aorta compared to the D group. The results indicate that PS restores ultrastructural integrity in the diabetic cardiovascular tissues.