Cargando…

Theoretical studies of structure, function and reactivity of molecules— A personal account

Last few decades theoretical/computational studies of structure, function and reactivity of molecules have been contributing significantly in chemistry by explanation of experimental results, better understanding of underlying principles and prediction of the unknown experimental outcome. Accuracy n...

Descripción completa

Detalles Bibliográficos
Autor principal: Morokuma, Keiji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Japan Academy 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3524299/
https://www.ncbi.nlm.nih.gov/pubmed/19444009
http://dx.doi.org/10.2183/pjab.85.167
Descripción
Sumario:Last few decades theoretical/computational studies of structure, function and reactivity of molecules have been contributing significantly in chemistry by explanation of experimental results, better understanding of underlying principles and prediction of the unknown experimental outcome. Accuracy needed in chemistry has long been established, but due to high power dependency of such accurate methods on the molecular size, it has been a major challenge to apply theoretical methods to large molecular systems. In the present article we will review some examples of such applications. One is theoretical study of growth/formation of carbon nanostructures such as fullerenes and carbon nanotubes, using quantum mechanical molecular dynamics method. For growth of single walled carbon nanotube from transition metal cluster, we have demonstrated continued growth of attached nanotube, cap formation and growth from small carbon fragments. For homogeneous catalysis we presented results of studies on N(2) activation by Zr complexes. For biomolecular reactions we use active site and protein models and show that in some catalyses the protein environment is involved in reactions and changes the preferred pathway, and in some other case the effect is modest. The review is concluded with a perspective.