Cargando…
Theoretical studies of structure, function and reactivity of molecules— A personal account
Last few decades theoretical/computational studies of structure, function and reactivity of molecules have been contributing significantly in chemistry by explanation of experimental results, better understanding of underlying principles and prediction of the unknown experimental outcome. Accuracy n...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Japan Academy
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3524299/ https://www.ncbi.nlm.nih.gov/pubmed/19444009 http://dx.doi.org/10.2183/pjab.85.167 |
_version_ | 1782253308354756608 |
---|---|
author | Morokuma, Keiji |
author_facet | Morokuma, Keiji |
author_sort | Morokuma, Keiji |
collection | PubMed |
description | Last few decades theoretical/computational studies of structure, function and reactivity of molecules have been contributing significantly in chemistry by explanation of experimental results, better understanding of underlying principles and prediction of the unknown experimental outcome. Accuracy needed in chemistry has long been established, but due to high power dependency of such accurate methods on the molecular size, it has been a major challenge to apply theoretical methods to large molecular systems. In the present article we will review some examples of such applications. One is theoretical study of growth/formation of carbon nanostructures such as fullerenes and carbon nanotubes, using quantum mechanical molecular dynamics method. For growth of single walled carbon nanotube from transition metal cluster, we have demonstrated continued growth of attached nanotube, cap formation and growth from small carbon fragments. For homogeneous catalysis we presented results of studies on N(2) activation by Zr complexes. For biomolecular reactions we use active site and protein models and show that in some catalyses the protein environment is involved in reactions and changes the preferred pathway, and in some other case the effect is modest. The review is concluded with a perspective. |
format | Online Article Text |
id | pubmed-3524299 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | The Japan Academy |
record_format | MEDLINE/PubMed |
spelling | pubmed-35242992013-01-09 Theoretical studies of structure, function and reactivity of molecules— A personal account Morokuma, Keiji Proc Jpn Acad Ser B Phys Biol Sci Review Last few decades theoretical/computational studies of structure, function and reactivity of molecules have been contributing significantly in chemistry by explanation of experimental results, better understanding of underlying principles and prediction of the unknown experimental outcome. Accuracy needed in chemistry has long been established, but due to high power dependency of such accurate methods on the molecular size, it has been a major challenge to apply theoretical methods to large molecular systems. In the present article we will review some examples of such applications. One is theoretical study of growth/formation of carbon nanostructures such as fullerenes and carbon nanotubes, using quantum mechanical molecular dynamics method. For growth of single walled carbon nanotube from transition metal cluster, we have demonstrated continued growth of attached nanotube, cap formation and growth from small carbon fragments. For homogeneous catalysis we presented results of studies on N(2) activation by Zr complexes. For biomolecular reactions we use active site and protein models and show that in some catalyses the protein environment is involved in reactions and changes the preferred pathway, and in some other case the effect is modest. The review is concluded with a perspective. The Japan Academy 2009-05 2009-05-15 /pmc/articles/PMC3524299/ /pubmed/19444009 http://dx.doi.org/10.2183/pjab.85.167 Text en © 2009 The Japan Academy This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Morokuma, Keiji Theoretical studies of structure, function and reactivity of molecules— A personal account |
title | Theoretical studies of structure, function and reactivity of molecules— A personal account |
title_full | Theoretical studies of structure, function and reactivity of molecules— A personal account |
title_fullStr | Theoretical studies of structure, function and reactivity of molecules— A personal account |
title_full_unstemmed | Theoretical studies of structure, function and reactivity of molecules— A personal account |
title_short | Theoretical studies of structure, function and reactivity of molecules— A personal account |
title_sort | theoretical studies of structure, function and reactivity of molecules— a personal account |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3524299/ https://www.ncbi.nlm.nih.gov/pubmed/19444009 http://dx.doi.org/10.2183/pjab.85.167 |
work_keys_str_mv | AT morokumakeiji theoreticalstudiesofstructurefunctionandreactivityofmoleculesapersonalaccount |