Cargando…
Statistical aspects of omics data analysis using the random compound covariate
BACKGROUND: Dealing with high dimensional markers, such as gene expression data obtained using microarray chip technology or genomics studies, is a key challenge because the numbers of features greatly exceeds the number of biological samples. After selecting biologically relevant genes, how to summ...
Autores principales: | Su, Pei-Fang, Chen, Xi, Chen, Heidi, Shyr, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3524312/ https://www.ncbi.nlm.nih.gov/pubmed/23281681 http://dx.doi.org/10.1186/1752-0509-6-S3-S11 |
Ejemplares similares
-
Block Forests: random forests for blocks of clinical and omics covariate data
por: Hornung, Roman, et al.
Publicado: (2019) -
Tweedie Compound Poisson Models with Covariate-Dependent Random Effects for Multilevel Semicontinuous Data
por: Ma, Renjun, et al.
Publicado: (2023) -
OmicsON – Integration of omics data with molecular networks and statistical procedures
por: Turek, Cezary, et al.
Publicado: (2020) -
Statistical notes for clinical researchers: analysis of covariance (ANCOVA)
por: Kim, Hae-Young
Publicado: (2018) -
SMGR: a joint statistical method for integrative analysis of single-cell multi-omics data
por: Song, Qianqian, et al.
Publicado: (2022)