Cargando…

Zinc-α2-Glycoprotein Is Unrelated to Gestational Diabetes: Anthropometric and Metabolic Determinants in Pregnant Women and Their Offspring

CONTEXT: Zinc-α2-Glycoprotein (ZAG) is an adipokine with lipolytic action and is positively associated with adiponectin in adipose tissue. We hypothesize that ZAG may be related with hydrocarbonate metabolism disturbances observed in gestational diabetes mellitus (GDM). OBJECTIVE: The aim of this st...

Descripción completa

Detalles Bibliográficos
Autores principales: Näf, Silvia, Escote, Xavier, Yañez, Rosa Elena, Ballesteros, Mónica, Simón, Inmaculada, Gil, Pilar, Megia, Ana, Vendrell, Joan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3525576/
https://www.ncbi.nlm.nih.gov/pubmed/23272038
http://dx.doi.org/10.1371/journal.pone.0047601
Descripción
Sumario:CONTEXT: Zinc-α2-Glycoprotein (ZAG) is an adipokine with lipolytic action and is positively associated with adiponectin in adipose tissue. We hypothesize that ZAG may be related with hydrocarbonate metabolism disturbances observed in gestational diabetes mellitus (GDM). OBJECTIVE: The aim of this study was to analyze serum ZAG concentration and its relationship with carbohydrate metabolism in pregnant women and its influence on fetal growth. DESIGN: 207 pregnant women (130 with normal glucose tolerance (NGT) and 77 with GDM) recruited in the early third trimester and their offspring were studied. Cord blood was obtained at delivery and neonatal anthropometry was assessed in the first 48 hours. ZAG was determined in maternal serum and cord blood. RESULTS: ZAG concentration was lower in cord blood than in maternal serum, but similar concentration was observed in NGT and GDM pregnant women. Also similar levels were found between offspring of NGT and GDM women. In the bivariate analysis, maternal ZAG (mZAG) was positively correlated with adiponectin and HDL cholesterol, and negatively correlated with insulin and triglyceride concentrations, and HOMA index. On the other hand, cord blood ZAG (cbZAG) was positively correlated with fat-free mass, birth weight and gestational age at delivery. After adjusting for confounding variables, gestational age at delivery and HDL cholesterol emerged as the sole determinants of cord blood ZAG and maternal ZAG concentrations, respectively. CONCLUSION: mZAG was not associated with glucose metabolism during pregnancy. ZAG concentration was lower in cord blood compared with maternal serum. cbZAG was independently correlated with gestational age at delivery, suggesting a role during the accelerated fetal growth during latter pregnancy.