Cargando…
Pacemaker and Plateau Potentials Shape Output of a Developing Locomotor Network
BACKGROUND: During development, spinal networks undergo an intense period of maturation in which immature forms of motor behavior are observed. Such behaviors are transient, giving way to more mature activity as development proceeds. The processes governing age-specific transitions in motor behavior...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3525839/ https://www.ncbi.nlm.nih.gov/pubmed/23142042 http://dx.doi.org/10.1016/j.cub.2012.10.025 |
_version_ | 1782253470884036608 |
---|---|
author | Tong, Huaxia McDearmid, Jonathan Robert |
author_facet | Tong, Huaxia McDearmid, Jonathan Robert |
author_sort | Tong, Huaxia |
collection | PubMed |
description | BACKGROUND: During development, spinal networks undergo an intense period of maturation in which immature forms of motor behavior are observed. Such behaviors are transient, giving way to more mature activity as development proceeds. The processes governing age-specific transitions in motor behavior are not fully understood. RESULTS: Using in vivo patch clamp electrophysiology, we have characterized ionic conductances and firing patterns of developing zebrafish spinal neurons. We find that a kernel of spinal interneurons, the ipsilateral caudal (IC) cells, generate inherent bursting activity that depends upon a persistent sodium current (I(NaP)). We further show that developmental transitions in motor behavior are accompanied by changes in IC cell bursting: during early life, these cells generate low frequency membrane oscillations that likely drive “coiling,” an immature form of motor output. As fish mature to swimming stages, IC cells switch to a sustained mode of bursting that permits generation of high-frequency oscillations during locomotion. Finally, we find that perturbation of IC cell bursting disrupts motor output at both coiling and swimming stages. CONCLUSIONS: Our results suggest that neurons with unique bursting characteristics are a fundamental component of developing motor networks. During development, these may shape network output and promote stage-specific reconfigurations in motor behavior. |
format | Online Article Text |
id | pubmed-3525839 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-35258392012-12-21 Pacemaker and Plateau Potentials Shape Output of a Developing Locomotor Network Tong, Huaxia McDearmid, Jonathan Robert Curr Biol Article BACKGROUND: During development, spinal networks undergo an intense period of maturation in which immature forms of motor behavior are observed. Such behaviors are transient, giving way to more mature activity as development proceeds. The processes governing age-specific transitions in motor behavior are not fully understood. RESULTS: Using in vivo patch clamp electrophysiology, we have characterized ionic conductances and firing patterns of developing zebrafish spinal neurons. We find that a kernel of spinal interneurons, the ipsilateral caudal (IC) cells, generate inherent bursting activity that depends upon a persistent sodium current (I(NaP)). We further show that developmental transitions in motor behavior are accompanied by changes in IC cell bursting: during early life, these cells generate low frequency membrane oscillations that likely drive “coiling,” an immature form of motor output. As fish mature to swimming stages, IC cells switch to a sustained mode of bursting that permits generation of high-frequency oscillations during locomotion. Finally, we find that perturbation of IC cell bursting disrupts motor output at both coiling and swimming stages. CONCLUSIONS: Our results suggest that neurons with unique bursting characteristics are a fundamental component of developing motor networks. During development, these may shape network output and promote stage-specific reconfigurations in motor behavior. Cell Press 2012-12-18 /pmc/articles/PMC3525839/ /pubmed/23142042 http://dx.doi.org/10.1016/j.cub.2012.10.025 Text en © 2012 ELL & Excerpta Medica. https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license |
spellingShingle | Article Tong, Huaxia McDearmid, Jonathan Robert Pacemaker and Plateau Potentials Shape Output of a Developing Locomotor Network |
title | Pacemaker and Plateau Potentials Shape Output of a Developing Locomotor Network |
title_full | Pacemaker and Plateau Potentials Shape Output of a Developing Locomotor Network |
title_fullStr | Pacemaker and Plateau Potentials Shape Output of a Developing Locomotor Network |
title_full_unstemmed | Pacemaker and Plateau Potentials Shape Output of a Developing Locomotor Network |
title_short | Pacemaker and Plateau Potentials Shape Output of a Developing Locomotor Network |
title_sort | pacemaker and plateau potentials shape output of a developing locomotor network |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3525839/ https://www.ncbi.nlm.nih.gov/pubmed/23142042 http://dx.doi.org/10.1016/j.cub.2012.10.025 |
work_keys_str_mv | AT tonghuaxia pacemakerandplateaupotentialsshapeoutputofadevelopinglocomotornetwork AT mcdearmidjonathanrobert pacemakerandplateaupotentialsshapeoutputofadevelopinglocomotornetwork |