Cargando…
The use of weighted multiple linear regression to estimate QTL-by-QTL epistatic effects
Knowledge of the nature and magnitude of gene effects, as well as their contribution to the control of metric traits, is important in formulating efficient breeding programs for the improvement of plant genetics. Information concerning a genetic parameter such as the additive-by-additive epistatic e...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sociedade Brasileira de Genética
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526089/ https://www.ncbi.nlm.nih.gov/pubmed/23271942 http://dx.doi.org/10.1590/S1415-47572012005000071 |
Sumario: | Knowledge of the nature and magnitude of gene effects, as well as their contribution to the control of metric traits, is important in formulating efficient breeding programs for the improvement of plant genetics. Information concerning a genetic parameter such as the additive-by-additive epistatic effect can be useful in traditional breeding. This report describes the results obtained by applying weighted multiple linear regression to estimate the parameter connected with an additive-by-additive epistatic interaction. Three weight variants were used: (1) standard weights based on estimated variances, (2) different weights for minimal, maximal and other lines, and (3) different weights for extreme and other lines. The approach described here combines two methods of estimation, one based on phenotypic observations and the other using molecular marker data. The comparison was done using Monte Carlo simulations. The results show that the application of weighted regression to the marker data yielded estimates similar to those obtained by phenotypic methods. |
---|