Cargando…
On pairwise distances and median score of three genomes under DCJ
In comparative genomics, the rearrangement distance between two genomes (equal the minimal number of genome rearrangements required to transform them into a single genome) is often used for measuring their evolutionary remoteness. Generalization of this measure to three genomes is known as the media...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526427/ https://www.ncbi.nlm.nih.gov/pubmed/23282410 http://dx.doi.org/10.1186/1471-2105-13-S19-S1 |
_version_ | 1782253557884387328 |
---|---|
author | Aganezov, Sergey Alekseyev, Max A |
author_facet | Aganezov, Sergey Alekseyev, Max A |
author_sort | Aganezov, Sergey |
collection | PubMed |
description | In comparative genomics, the rearrangement distance between two genomes (equal the minimal number of genome rearrangements required to transform them into a single genome) is often used for measuring their evolutionary remoteness. Generalization of this measure to three genomes is known as the median score (while a resulting genome is called median genome). In contrast to the rearrangement distance between two genomes which can be computed in linear time, computing the median score for three genomes is NP-hard. This inspires a quest for simpler and faster approximations for the median score, the most natural of which appears to be the halved sum of pairwise distances which in fact represents a lower bound for the median score. In this work, we study relationship and interplay of pairwise distances between three genomes and their median score under the model of Double-Cut-and-Join (DCJ) rearrangements. Most remarkably we show that while a rearrangement may change the sum of pairwise distances by at most 2 (and thus change the lower bound by at most 1), even the most "powerful" rearrangements in this respect that increase the lower bound by 1 (by moving one genome farther away from each of the other two genomes), which we call strong, do not necessarily affect the median score. This observation implies that the two measures are not as well-correlated as one's intuition may suggest. We further prove that the median score attains the lower bound exactly on the triples of genomes that can be obtained from a single genome with strong rearrangements. While the sum of pairwise distances with the factor 2/3 represents an upper bound for the median score, its tightness remains unclear. Nonetheless, we show that the difference of the median score and its lower bound is not bounded by a constant. |
format | Online Article Text |
id | pubmed-3526427 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35264272013-01-10 On pairwise distances and median score of three genomes under DCJ Aganezov, Sergey Alekseyev, Max A BMC Bioinformatics Proceedings In comparative genomics, the rearrangement distance between two genomes (equal the minimal number of genome rearrangements required to transform them into a single genome) is often used for measuring their evolutionary remoteness. Generalization of this measure to three genomes is known as the median score (while a resulting genome is called median genome). In contrast to the rearrangement distance between two genomes which can be computed in linear time, computing the median score for three genomes is NP-hard. This inspires a quest for simpler and faster approximations for the median score, the most natural of which appears to be the halved sum of pairwise distances which in fact represents a lower bound for the median score. In this work, we study relationship and interplay of pairwise distances between three genomes and their median score under the model of Double-Cut-and-Join (DCJ) rearrangements. Most remarkably we show that while a rearrangement may change the sum of pairwise distances by at most 2 (and thus change the lower bound by at most 1), even the most "powerful" rearrangements in this respect that increase the lower bound by 1 (by moving one genome farther away from each of the other two genomes), which we call strong, do not necessarily affect the median score. This observation implies that the two measures are not as well-correlated as one's intuition may suggest. We further prove that the median score attains the lower bound exactly on the triples of genomes that can be obtained from a single genome with strong rearrangements. While the sum of pairwise distances with the factor 2/3 represents an upper bound for the median score, its tightness remains unclear. Nonetheless, we show that the difference of the median score and its lower bound is not bounded by a constant. BioMed Central 2012-12-19 /pmc/articles/PMC3526427/ /pubmed/23282410 http://dx.doi.org/10.1186/1471-2105-13-S19-S1 Text en Copyright ©2012 Aganezov and Alekseyev; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Proceedings Aganezov, Sergey Alekseyev, Max A On pairwise distances and median score of three genomes under DCJ |
title | On pairwise distances and median score of three genomes under DCJ |
title_full | On pairwise distances and median score of three genomes under DCJ |
title_fullStr | On pairwise distances and median score of three genomes under DCJ |
title_full_unstemmed | On pairwise distances and median score of three genomes under DCJ |
title_short | On pairwise distances and median score of three genomes under DCJ |
title_sort | on pairwise distances and median score of three genomes under dcj |
topic | Proceedings |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526427/ https://www.ncbi.nlm.nih.gov/pubmed/23282410 http://dx.doi.org/10.1186/1471-2105-13-S19-S1 |
work_keys_str_mv | AT aganezovsergey onpairwisedistancesandmedianscoreofthreegenomesunderdcj AT alekseyevmaxa onpairwisedistancesandmedianscoreofthreegenomesunderdcj |