Cargando…

Partitioning of excess mortality in population-based cancer patient survival studies using flexible parametric survival models

BACKGROUND: Relative survival is commonly used for studying survival of cancer patients as it captures both the direct and indirect contribution of a cancer diagnosis on mortality by comparing the observed survival of the patients to the expected survival in a comparable cancer-free population. Howe...

Descripción completa

Detalles Bibliográficos
Autores principales: Eloranta, Sandra, Lambert, Paul C, Andersson, Therese ML, Czene, Kamila, Hall, Per, Björkholm, Magnus, Dickman, Paul W
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526518/
https://www.ncbi.nlm.nih.gov/pubmed/22726307
http://dx.doi.org/10.1186/1471-2288-12-86
_version_ 1782253579136925696
author Eloranta, Sandra
Lambert, Paul C
Andersson, Therese ML
Czene, Kamila
Hall, Per
Björkholm, Magnus
Dickman, Paul W
author_facet Eloranta, Sandra
Lambert, Paul C
Andersson, Therese ML
Czene, Kamila
Hall, Per
Björkholm, Magnus
Dickman, Paul W
author_sort Eloranta, Sandra
collection PubMed
description BACKGROUND: Relative survival is commonly used for studying survival of cancer patients as it captures both the direct and indirect contribution of a cancer diagnosis on mortality by comparing the observed survival of the patients to the expected survival in a comparable cancer-free population. However, existing methods do not allow estimation of the impact of isolated conditions (e.g., excess cardiovascular mortality) on the total excess mortality. For this purpose we extend flexible parametric survival models for relative survival, which use restricted cubic splines for the baseline cumulative excess hazard and for any time-dependent effects. METHODS: In the extended model we partition the excess mortality associated with a diagnosis of cancer through estimating a separate baseline excess hazard function for the outcomes under investigation. This is done by incorporating mutually exclusive background mortality rates, stratified by the underlying causes of death reported in the Swedish population, and by introducing cause of death as a time-dependent effect in the extended model. This approach thereby enables modeling of temporal trends in e.g., excess cardiovascular mortality and remaining cancer excess mortality simultaneously. Furthermore, we illustrate how the results from the proposed model can be used to derive crude probabilities of death due to the component parts, i.e., probabilities estimated in the presence of competing causes of death. RESULTS: The method is illustrated with examples where the total excess mortality experienced by patients diagnosed with breast cancer is partitioned into excess cardiovascular mortality and remaining cancer excess mortality. CONCLUSIONS: The proposed method can be used to simultaneously study disease patterns and temporal trends for various causes of cancer-consequent deaths. Such information should be of interest for patients and clinicians as one way of improving prognosis after cancer is through adapting treatment strategies and follow-up of patients towards reducing the excess mortality caused by side effects of the treatment.
format Online
Article
Text
id pubmed-3526518
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35265182013-01-03 Partitioning of excess mortality in population-based cancer patient survival studies using flexible parametric survival models Eloranta, Sandra Lambert, Paul C Andersson, Therese ML Czene, Kamila Hall, Per Björkholm, Magnus Dickman, Paul W BMC Med Res Methodol Research Article BACKGROUND: Relative survival is commonly used for studying survival of cancer patients as it captures both the direct and indirect contribution of a cancer diagnosis on mortality by comparing the observed survival of the patients to the expected survival in a comparable cancer-free population. However, existing methods do not allow estimation of the impact of isolated conditions (e.g., excess cardiovascular mortality) on the total excess mortality. For this purpose we extend flexible parametric survival models for relative survival, which use restricted cubic splines for the baseline cumulative excess hazard and for any time-dependent effects. METHODS: In the extended model we partition the excess mortality associated with a diagnosis of cancer through estimating a separate baseline excess hazard function for the outcomes under investigation. This is done by incorporating mutually exclusive background mortality rates, stratified by the underlying causes of death reported in the Swedish population, and by introducing cause of death as a time-dependent effect in the extended model. This approach thereby enables modeling of temporal trends in e.g., excess cardiovascular mortality and remaining cancer excess mortality simultaneously. Furthermore, we illustrate how the results from the proposed model can be used to derive crude probabilities of death due to the component parts, i.e., probabilities estimated in the presence of competing causes of death. RESULTS: The method is illustrated with examples where the total excess mortality experienced by patients diagnosed with breast cancer is partitioned into excess cardiovascular mortality and remaining cancer excess mortality. CONCLUSIONS: The proposed method can be used to simultaneously study disease patterns and temporal trends for various causes of cancer-consequent deaths. Such information should be of interest for patients and clinicians as one way of improving prognosis after cancer is through adapting treatment strategies and follow-up of patients towards reducing the excess mortality caused by side effects of the treatment. BioMed Central 2012-06-24 /pmc/articles/PMC3526518/ /pubmed/22726307 http://dx.doi.org/10.1186/1471-2288-12-86 Text en Copyright ©2012 Eloranta et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Eloranta, Sandra
Lambert, Paul C
Andersson, Therese ML
Czene, Kamila
Hall, Per
Björkholm, Magnus
Dickman, Paul W
Partitioning of excess mortality in population-based cancer patient survival studies using flexible parametric survival models
title Partitioning of excess mortality in population-based cancer patient survival studies using flexible parametric survival models
title_full Partitioning of excess mortality in population-based cancer patient survival studies using flexible parametric survival models
title_fullStr Partitioning of excess mortality in population-based cancer patient survival studies using flexible parametric survival models
title_full_unstemmed Partitioning of excess mortality in population-based cancer patient survival studies using flexible parametric survival models
title_short Partitioning of excess mortality in population-based cancer patient survival studies using flexible parametric survival models
title_sort partitioning of excess mortality in population-based cancer patient survival studies using flexible parametric survival models
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526518/
https://www.ncbi.nlm.nih.gov/pubmed/22726307
http://dx.doi.org/10.1186/1471-2288-12-86
work_keys_str_mv AT elorantasandra partitioningofexcessmortalityinpopulationbasedcancerpatientsurvivalstudiesusingflexibleparametricsurvivalmodels
AT lambertpaulc partitioningofexcessmortalityinpopulationbasedcancerpatientsurvivalstudiesusingflexibleparametricsurvivalmodels
AT anderssonthereseml partitioningofexcessmortalityinpopulationbasedcancerpatientsurvivalstudiesusingflexibleparametricsurvivalmodels
AT czenekamila partitioningofexcessmortalityinpopulationbasedcancerpatientsurvivalstudiesusingflexibleparametricsurvivalmodels
AT hallper partitioningofexcessmortalityinpopulationbasedcancerpatientsurvivalstudiesusingflexibleparametricsurvivalmodels
AT bjorkholmmagnus partitioningofexcessmortalityinpopulationbasedcancerpatientsurvivalstudiesusingflexibleparametricsurvivalmodels
AT dickmanpaulw partitioningofexcessmortalityinpopulationbasedcancerpatientsurvivalstudiesusingflexibleparametricsurvivalmodels