Cargando…
Three-Dimensional Imaging of Prox1-EGFP Transgenic Mouse Gonads Reveals Divergent Modes of Lymphangiogenesis in the Testis and Ovary
The lymphatic vasculature forms a specialized part of the circulatory system, being essential for maintaining tissue fluid homeostasis and for transport of hormones, macromolecules, and immune cells. Although lymphatic vessels are assumed to play an important role in most tissues, their morphogenesi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527586/ https://www.ncbi.nlm.nih.gov/pubmed/23285114 http://dx.doi.org/10.1371/journal.pone.0052620 |
_version_ | 1782253757478731776 |
---|---|
author | Svingen, Terje François, Mathias Wilhelm, Dagmar Koopman, Peter |
author_facet | Svingen, Terje François, Mathias Wilhelm, Dagmar Koopman, Peter |
author_sort | Svingen, Terje |
collection | PubMed |
description | The lymphatic vasculature forms a specialized part of the circulatory system, being essential for maintaining tissue fluid homeostasis and for transport of hormones, macromolecules, and immune cells. Although lymphatic vessels are assumed to play an important role in most tissues, their morphogenesis and function in the gonads remains poorly understood. Here we have exploited a lymphatic-specific Prox1-EGFP reporter mouse model and optical projection tomography technology to characterize both the temporal and spatial development of the lymphatic vessel network in mouse testes and ovaries. We find that lymphangiogenesis in the testis is initiated during late gestation, but in contrast to other organs, lymphatic vessels remain confined to the testis cap and, unlike blood vessels, do not infiltrate the entire organ. Conversely, lymphatic vessels invade the ovarian tissue, beginning postnatally, and sprouting from preexisting lymphatic vessels at the extraovarian rete. The ovary develops a rich network of lymphatic vessels, extending from the medulla into the surrounding cortex adjacent to developing follicles. This study reveals distinct patterns of lymphangiogenesis in the testes and ovaries and will serve as the basis for the identification of the divergent molecular pathways that control morphogenesis and the function of the lymphatic vasculature in these two organs. |
format | Online Article Text |
id | pubmed-3527586 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35275862013-01-02 Three-Dimensional Imaging of Prox1-EGFP Transgenic Mouse Gonads Reveals Divergent Modes of Lymphangiogenesis in the Testis and Ovary Svingen, Terje François, Mathias Wilhelm, Dagmar Koopman, Peter PLoS One Research Article The lymphatic vasculature forms a specialized part of the circulatory system, being essential for maintaining tissue fluid homeostasis and for transport of hormones, macromolecules, and immune cells. Although lymphatic vessels are assumed to play an important role in most tissues, their morphogenesis and function in the gonads remains poorly understood. Here we have exploited a lymphatic-specific Prox1-EGFP reporter mouse model and optical projection tomography technology to characterize both the temporal and spatial development of the lymphatic vessel network in mouse testes and ovaries. We find that lymphangiogenesis in the testis is initiated during late gestation, but in contrast to other organs, lymphatic vessels remain confined to the testis cap and, unlike blood vessels, do not infiltrate the entire organ. Conversely, lymphatic vessels invade the ovarian tissue, beginning postnatally, and sprouting from preexisting lymphatic vessels at the extraovarian rete. The ovary develops a rich network of lymphatic vessels, extending from the medulla into the surrounding cortex adjacent to developing follicles. This study reveals distinct patterns of lymphangiogenesis in the testes and ovaries and will serve as the basis for the identification of the divergent molecular pathways that control morphogenesis and the function of the lymphatic vasculature in these two organs. Public Library of Science 2012-12-20 /pmc/articles/PMC3527586/ /pubmed/23285114 http://dx.doi.org/10.1371/journal.pone.0052620 Text en © 2012 Svingen et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Svingen, Terje François, Mathias Wilhelm, Dagmar Koopman, Peter Three-Dimensional Imaging of Prox1-EGFP Transgenic Mouse Gonads Reveals Divergent Modes of Lymphangiogenesis in the Testis and Ovary |
title | Three-Dimensional Imaging of Prox1-EGFP Transgenic Mouse Gonads Reveals Divergent Modes of Lymphangiogenesis in the Testis and Ovary |
title_full | Three-Dimensional Imaging of Prox1-EGFP Transgenic Mouse Gonads Reveals Divergent Modes of Lymphangiogenesis in the Testis and Ovary |
title_fullStr | Three-Dimensional Imaging of Prox1-EGFP Transgenic Mouse Gonads Reveals Divergent Modes of Lymphangiogenesis in the Testis and Ovary |
title_full_unstemmed | Three-Dimensional Imaging of Prox1-EGFP Transgenic Mouse Gonads Reveals Divergent Modes of Lymphangiogenesis in the Testis and Ovary |
title_short | Three-Dimensional Imaging of Prox1-EGFP Transgenic Mouse Gonads Reveals Divergent Modes of Lymphangiogenesis in the Testis and Ovary |
title_sort | three-dimensional imaging of prox1-egfp transgenic mouse gonads reveals divergent modes of lymphangiogenesis in the testis and ovary |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527586/ https://www.ncbi.nlm.nih.gov/pubmed/23285114 http://dx.doi.org/10.1371/journal.pone.0052620 |
work_keys_str_mv | AT svingenterje threedimensionalimagingofprox1egfptransgenicmousegonadsrevealsdivergentmodesoflymphangiogenesisinthetestisandovary AT francoismathias threedimensionalimagingofprox1egfptransgenicmousegonadsrevealsdivergentmodesoflymphangiogenesisinthetestisandovary AT wilhelmdagmar threedimensionalimagingofprox1egfptransgenicmousegonadsrevealsdivergentmodesoflymphangiogenesisinthetestisandovary AT koopmanpeter threedimensionalimagingofprox1egfptransgenicmousegonadsrevealsdivergentmodesoflymphangiogenesisinthetestisandovary |