Cargando…

Patterns in Cortical Connectivity for Determining Outcomes in Hand Function after Subcortical Stroke

BACKGROUND AND PURPOSE: Previous studies have noted changes in resting-state functional connectivity during motor recovery following stroke. However, these studies always uncover various patterns of motor recovery. Moreover, subgroups of stroke patients with different outcomes in hand function have...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Dazhi, Song, Fan, Xu, Dongrong, Peterson, Bradley S., Sun, Limin, Men, Weiwei, Yan, Xu, Fan, Mingxia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527607/
https://www.ncbi.nlm.nih.gov/pubmed/23285171
http://dx.doi.org/10.1371/journal.pone.0052727
Descripción
Sumario:BACKGROUND AND PURPOSE: Previous studies have noted changes in resting-state functional connectivity during motor recovery following stroke. However, these studies always uncover various patterns of motor recovery. Moreover, subgroups of stroke patients with different outcomes in hand function have rarely been studied. MATERIALS AND METHODS: We selected 24 patients who had a subcortical stroke in the left motor pathway and displayed only motor deficits. The patients were divided into two subgroups: completely paralyzed hands (CPH) (12 patients) and partially paralyzed hands (PPH) (12 patients). Twenty-four healthy controls (HC) were also recruited. We performed functional connectivity analysis in both the ipsilesional and contralesional primary motor cortex (M1) to explore the differences in the patterns between each pair of the three diagnostic groups. RESULTS: Compared with the HC, the PPH group displays reduced connectivity of both the ipsilesional and contralesional M1 with bilateral prefrontal gyrus and contralesional cerebellum posterior lobe. The connectivity of both the ipsilesional and contralesional M1 with contralateral primary sensorimotor cortex was reduced in the CPH group. Additionally, the connectivity of the ipsilesional M1 with contralesional postcentral gyrus, superior parietal lobule and ipsilesional inferior parietal lobule was reduced in the CPH group compared with the PPH group. Moreover, the connectivity of these regions was positively correlated with the Fugl-Meyer Assessment scores (hand+wrist) across all stroke patients. CONCLUSIONS: Patterns in cortical connectivity may serve as a potential biomarker for the neural substratum associated with outcomes in hand function after subcortical stroke.