Cargando…

Evaluation of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Second-Generation Lignin Analysis

Matrix-Assisted Laser Desorption/Ionization time-of-flight (MALDI-TOF) mass spectrometry is evaluated as an elucidation tool for structural features and molecular weights estimation of some extracted herbaceous lignins. Optimization of analysis conditions, using a typical organic matrix, namely α-cy...

Descripción completa

Detalles Bibliográficos
Autores principales: Richel, Aurore, Vanderghem, Caroline, Simon, Mathilde, Wathelet, Bernard, Paquot, Michel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Libertas Academica 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528113/
https://www.ncbi.nlm.nih.gov/pubmed/23300342
http://dx.doi.org/10.4137/ACI.S10799
Descripción
Sumario:Matrix-Assisted Laser Desorption/Ionization time-of-flight (MALDI-TOF) mass spectrometry is evaluated as an elucidation tool for structural features and molecular weights estimation of some extracted herbaceous lignins. Optimization of analysis conditions, using a typical organic matrix, namely α-cyano-4-hydroxycinnamic acid (CHCA), in combination with α-cyclodextrin, allows efficient ionization of poorly soluble lignin materials and suppression of matrix-related ions background. Analysis of low-mass fragments ions (m/z 100–600) in the positive ion mode offers a “fingerprint” of starting lignins that could be a fine strategy to qualitatively identify principal inter-unit linkages between phenylpropanoid units. The molecular weights of lignins are estimated using size exclusion chromatography and compared to MALDI-TOF-MS profiles. Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum Virgatum L.) lignins, recovered after a formic acid/acetic acid/water process or aqueous ammonia soaking, are selected as benchmarks for this study.