Cargando…

Characterization of HMW-GS and evaluation of their diversity in morphologically elite synthetic hexaploid wheats

High molecular weight glutenin subunit composition and variation in 95 Elite-1 synthetic hexaploid (SH) wheats (Triticum turgidum/Aegilops tauschii; 2n = 6× = 42; AABBDD) were determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis method (SDS-PAGE). Twenty two different alleles at...

Descripción completa

Detalles Bibliográficos
Autores principales: Rasheed, Awais, Safdar, Tania, Gul-Kazi, Alvina, Mahmood, Tariq, Akram, Zahid, Mujeeb-Kazi, Abdul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Society of Breeding 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528335/
https://www.ncbi.nlm.nih.gov/pubmed/23341752
http://dx.doi.org/10.1270/jsbbs.62.365
Descripción
Sumario:High molecular weight glutenin subunit composition and variation in 95 Elite-1 synthetic hexaploid (SH) wheats (Triticum turgidum/Aegilops tauschii; 2n = 6× = 42; AABBDD) were determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis method (SDS-PAGE). Twenty two different alleles at Glu-1 loci in SHs were observed. Forty four different patterns of HMW-GS in synthetics were found. This higher HMW glutenin composition was due to higher proportion of D-genome encoded subunits in these SHs. 8% urea/SDS-PAGE better discriminated subunit 2* than 12% gels. However 12% urea/SDS-PAGE allowed differentiated mobility of Glu-D(t)1 subunits. Genetic variability at Glu-D(t)1 locus was greater than Glu-A1 and Glu-B1 loci. The relative high frequency of superior alleles, Glu-B1b and Glu-D(t)1d indicated the superior bread making quality attributes embedded in these synthetic hexaploid wheats. Of the 95 Elite-1 SHs 27.1% possessed superior alleles at Glu-A1 and 51% had superior alleles at Glu-B1 locus. At Glu-D(t)1 frequency of inferior allele 1Dx2 + 1Dy12 was very low (5.26%) and nine different rare alleles along with the higher frequency (22.1%) of D-genome encoded subunit, 1Dx5 + 1Dy10, were observed. These superior alleles shall form the priority selective sieve for their usage in wheat improvement efforts.