Cargando…

Hypertension-Linked Mutation of α-Adducin Increases CFTR Surface Expression and Activity in HEK and Cultured Rat Distal Convoluted Tubule Cells

The CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) activity and localization are influenced by the cytoskeleton, in particular by actin and its polymerization state. In this study we investigated whether the expression of the hypertensive mutations of α-adducin (G460W-S586C in humans, F3...

Descripción completa

Detalles Bibliográficos
Autores principales: Mondini, Anna, Sassone, Francesca, Civello, Davide Antonio, Garavaglia, Maria Lisa, Bazzini, Claudia, Rodighiero, Simona, Vezzoli, Valeria, Conti, Fabio, Torielli, Lucia, Capasso, Giovanbattista, Paulmichl, Markus, Meyer, Giuliano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528715/
https://www.ncbi.nlm.nih.gov/pubmed/23284854
http://dx.doi.org/10.1371/journal.pone.0052014
_version_ 1782253856196919296
author Mondini, Anna
Sassone, Francesca
Civello, Davide Antonio
Garavaglia, Maria Lisa
Bazzini, Claudia
Rodighiero, Simona
Vezzoli, Valeria
Conti, Fabio
Torielli, Lucia
Capasso, Giovanbattista
Paulmichl, Markus
Meyer, Giuliano
author_facet Mondini, Anna
Sassone, Francesca
Civello, Davide Antonio
Garavaglia, Maria Lisa
Bazzini, Claudia
Rodighiero, Simona
Vezzoli, Valeria
Conti, Fabio
Torielli, Lucia
Capasso, Giovanbattista
Paulmichl, Markus
Meyer, Giuliano
author_sort Mondini, Anna
collection PubMed
description The CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) activity and localization are influenced by the cytoskeleton, in particular by actin and its polymerization state. In this study we investigated whether the expression of the hypertensive mutations of α-adducin (G460W-S586C in humans, F316Y in rats), an actin capping protein, led to a functional modification of CFTR activity and surface expression. The experiments were performed on HEK293 T cells cotransfected with CFTR and the human wild type (WT) or G460W mutated α-adducin. In whole-cell patch-clamp experiments, both the CFTR chloride current and the slope of current activation after forskolin addition were significantly higher in HEK cells overexpressing the G460W adducin. A higher plasma membrane density of active CFTR channels was confirmed by cell-attached patch-clamp experiments, both in HEK cells and in cultured primary DCT cells, isolated from MHS (Milan Hypertensive Strain, a Wistar rat (Rattus norvegicus) hypertensive model carrying the F316Y adducin mutation), compared to MNS (Milan Normotensive Strain) rats. Western blot experiments demonstrated an increase of the plasma membrane CFTR protein expression, with a modification of the channel glycosylation state, in the presence of the mutated adducin. A higher retention of CFTR protein in the plasma membrane was confirmed both by FRAP (Fluorescence Recovery After Photobleaching) and photoactivation experiments. The present data indicate that in HEK cells and in isolated DCT cells the presence of the G460W-S586C hypertensive variant of adducin increases CFTR channel activity, possibly by altering its membrane turnover and inducing a retention of the channel in the plasmamembrane. Since CFTR is known to modulate the activity of many others transport systems, the increased surface expression of the channel could have consequences on the whole network of transport in kidney cells.
format Online
Article
Text
id pubmed-3528715
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35287152013-01-02 Hypertension-Linked Mutation of α-Adducin Increases CFTR Surface Expression and Activity in HEK and Cultured Rat Distal Convoluted Tubule Cells Mondini, Anna Sassone, Francesca Civello, Davide Antonio Garavaglia, Maria Lisa Bazzini, Claudia Rodighiero, Simona Vezzoli, Valeria Conti, Fabio Torielli, Lucia Capasso, Giovanbattista Paulmichl, Markus Meyer, Giuliano PLoS One Research Article The CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) activity and localization are influenced by the cytoskeleton, in particular by actin and its polymerization state. In this study we investigated whether the expression of the hypertensive mutations of α-adducin (G460W-S586C in humans, F316Y in rats), an actin capping protein, led to a functional modification of CFTR activity and surface expression. The experiments were performed on HEK293 T cells cotransfected with CFTR and the human wild type (WT) or G460W mutated α-adducin. In whole-cell patch-clamp experiments, both the CFTR chloride current and the slope of current activation after forskolin addition were significantly higher in HEK cells overexpressing the G460W adducin. A higher plasma membrane density of active CFTR channels was confirmed by cell-attached patch-clamp experiments, both in HEK cells and in cultured primary DCT cells, isolated from MHS (Milan Hypertensive Strain, a Wistar rat (Rattus norvegicus) hypertensive model carrying the F316Y adducin mutation), compared to MNS (Milan Normotensive Strain) rats. Western blot experiments demonstrated an increase of the plasma membrane CFTR protein expression, with a modification of the channel glycosylation state, in the presence of the mutated adducin. A higher retention of CFTR protein in the plasma membrane was confirmed both by FRAP (Fluorescence Recovery After Photobleaching) and photoactivation experiments. The present data indicate that in HEK cells and in isolated DCT cells the presence of the G460W-S586C hypertensive variant of adducin increases CFTR channel activity, possibly by altering its membrane turnover and inducing a retention of the channel in the plasmamembrane. Since CFTR is known to modulate the activity of many others transport systems, the increased surface expression of the channel could have consequences on the whole network of transport in kidney cells. Public Library of Science 2012-12-21 /pmc/articles/PMC3528715/ /pubmed/23284854 http://dx.doi.org/10.1371/journal.pone.0052014 Text en © 2012 Mondini et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Mondini, Anna
Sassone, Francesca
Civello, Davide Antonio
Garavaglia, Maria Lisa
Bazzini, Claudia
Rodighiero, Simona
Vezzoli, Valeria
Conti, Fabio
Torielli, Lucia
Capasso, Giovanbattista
Paulmichl, Markus
Meyer, Giuliano
Hypertension-Linked Mutation of α-Adducin Increases CFTR Surface Expression and Activity in HEK and Cultured Rat Distal Convoluted Tubule Cells
title Hypertension-Linked Mutation of α-Adducin Increases CFTR Surface Expression and Activity in HEK and Cultured Rat Distal Convoluted Tubule Cells
title_full Hypertension-Linked Mutation of α-Adducin Increases CFTR Surface Expression and Activity in HEK and Cultured Rat Distal Convoluted Tubule Cells
title_fullStr Hypertension-Linked Mutation of α-Adducin Increases CFTR Surface Expression and Activity in HEK and Cultured Rat Distal Convoluted Tubule Cells
title_full_unstemmed Hypertension-Linked Mutation of α-Adducin Increases CFTR Surface Expression and Activity in HEK and Cultured Rat Distal Convoluted Tubule Cells
title_short Hypertension-Linked Mutation of α-Adducin Increases CFTR Surface Expression and Activity in HEK and Cultured Rat Distal Convoluted Tubule Cells
title_sort hypertension-linked mutation of α-adducin increases cftr surface expression and activity in hek and cultured rat distal convoluted tubule cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528715/
https://www.ncbi.nlm.nih.gov/pubmed/23284854
http://dx.doi.org/10.1371/journal.pone.0052014
work_keys_str_mv AT mondinianna hypertensionlinkedmutationofaadducinincreasescftrsurfaceexpressionandactivityinhekandculturedratdistalconvolutedtubulecells
AT sassonefrancesca hypertensionlinkedmutationofaadducinincreasescftrsurfaceexpressionandactivityinhekandculturedratdistalconvolutedtubulecells
AT civellodavideantonio hypertensionlinkedmutationofaadducinincreasescftrsurfaceexpressionandactivityinhekandculturedratdistalconvolutedtubulecells
AT garavagliamarialisa hypertensionlinkedmutationofaadducinincreasescftrsurfaceexpressionandactivityinhekandculturedratdistalconvolutedtubulecells
AT bazziniclaudia hypertensionlinkedmutationofaadducinincreasescftrsurfaceexpressionandactivityinhekandculturedratdistalconvolutedtubulecells
AT rodighierosimona hypertensionlinkedmutationofaadducinincreasescftrsurfaceexpressionandactivityinhekandculturedratdistalconvolutedtubulecells
AT vezzolivaleria hypertensionlinkedmutationofaadducinincreasescftrsurfaceexpressionandactivityinhekandculturedratdistalconvolutedtubulecells
AT contifabio hypertensionlinkedmutationofaadducinincreasescftrsurfaceexpressionandactivityinhekandculturedratdistalconvolutedtubulecells
AT toriellilucia hypertensionlinkedmutationofaadducinincreasescftrsurfaceexpressionandactivityinhekandculturedratdistalconvolutedtubulecells
AT capassogiovanbattista hypertensionlinkedmutationofaadducinincreasescftrsurfaceexpressionandactivityinhekandculturedratdistalconvolutedtubulecells
AT paulmichlmarkus hypertensionlinkedmutationofaadducinincreasescftrsurfaceexpressionandactivityinhekandculturedratdistalconvolutedtubulecells
AT meyergiuliano hypertensionlinkedmutationofaadducinincreasescftrsurfaceexpressionandactivityinhekandculturedratdistalconvolutedtubulecells