Cargando…
Non-Parametric Statistical Thresholding for Sparse Magnetoencephalography Source Reconstructions
Uncovering brain activity from magnetoencephalography (MEG) data requires solving an ill-posed inverse problem, greatly confounded by noise, interference, and correlated sources. Sparse reconstruction algorithms, such as Champagne, show great promise in that they provide focal brain activations robu...
Autores principales: | Owen, Julia P., Sekihara, Kensuke, Nagarajan, Srikantan S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530032/ https://www.ncbi.nlm.nih.gov/pubmed/23271990 http://dx.doi.org/10.3389/fnins.2012.00186 |
Ejemplares similares
-
NUTMEG: Open Source Software for M/EEG Source Reconstruction
por: Hinkley, Leighton B. N., et al.
Publicado: (2020) -
MEG/EEG Source Reconstruction, Statistical Evaluation, and Visualization with NUTMEG
por: Dalal, Sarang S., et al.
Publicado: (2011) -
Cognitive Impairments in Schizophrenia as Assessed Through Activation and Connectivity Measures of Magnetoencephalography (MEG) Data
por: Hinkley, Leighton B. N., et al.
Publicado: (2010) -
Complex-Value Coherence Mapping Reveals Novel Abnormal Resting-State Functional Connectivity Networks in Task-Specific Focal Hand Dystonia
por: Hinkley, Leighton B. N., et al.
Publicado: (2013) -
Clinical Validation of the Champagne Algorithm for Evoked Response Source Localization in Magnetoencephalography
por: Bhutada, Abhishek S., et al.
Publicado: (2021)