Cargando…

CLPTM1L Is Overexpressed in Lung Cancer and Associated with Apoptosis

CLPTM1L is believed to be associated with lung cancer. However, there is little information regarding its expression and function. Here using immunohistochemistry, we found that CLPTM1L expression was markedly increased in lung cancer tissues relative to normal tissues, especially in lung adenocarci...

Descripción completa

Detalles Bibliográficos
Autores principales: Ni, Zhenhua, Tao, Kun, Chen, Guo, Chen, Qingge, Tang, Jianmin, Luo, Xuming, Yin, Peihao, Tang, Jihong, Wang, Xiongbiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530437/
https://www.ncbi.nlm.nih.gov/pubmed/23300716
http://dx.doi.org/10.1371/journal.pone.0052598
Descripción
Sumario:CLPTM1L is believed to be associated with lung cancer. However, there is little information regarding its expression and function. Here using immunohistochemistry, we found that CLPTM1L expression was markedly increased in lung cancer tissues relative to normal tissues, especially in lung adenocarcinoma. CLPTM1L expression was not found to be associated with stages, smoking status, lymph node metastasis, or T lymphocyte infiltration but with differentiation stage. We found CLPTM1L to be enriched in the mitochondrial compared with plasma membrane protein extracts. CLPTM1L-EGFP transfection showed that the molecule product was expressed in cytoplasm and indicated the mitochondrial localization stained with mitochondrial marker MitoTracker. CLPTM1L transferred lung cancer cell line 95-D showed no growth inhibition or cell apoptosis, but it did show inhibited sensitivity to cis-diamminedichloroplatinum(II) (cisplatin, CDDP). Knockdown of CLPTM1L by RNAi did not interfere with cell proliferation but it did increase cell sensitivity to CDDP and activation of caspase-9 and caspase-3/7. These data indicate CLPTM1L is a mitochondria protein and that it may be associated with anti-apoptotic mechanism which affects drug-resistance in turn.