Cargando…
PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt
Reversible phosphorylation is a key mechanism for regulating protein function. Thus it is of high interest to know which kinase can phosphorylate which proteins. Comprehensive information about phosphorylation sites in Arabidopsis proteins is hosted within the PhosPhAt database (http://phosphat.mpim...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531128/ https://www.ncbi.nlm.nih.gov/pubmed/23172287 http://dx.doi.org/10.1093/nar/gks1081 |
_version_ | 1782254116944216064 |
---|---|
author | Zulawski, Monika Braginets, Rostyslav Schulze, Waltraud X. |
author_facet | Zulawski, Monika Braginets, Rostyslav Schulze, Waltraud X. |
author_sort | Zulawski, Monika |
collection | PubMed |
description | Reversible phosphorylation is a key mechanism for regulating protein function. Thus it is of high interest to know which kinase can phosphorylate which proteins. Comprehensive information about phosphorylation sites in Arabidopsis proteins is hosted within the PhosPhAt database (http://phosphat.mpimp-golm.mpg.de). However, our knowledge of the kinases that phosphorylate those sites is dispersed throughout the literature and very difficult to access, particularly for investigators seeking to interpret large scale and high-throughput experiments. Therefore, we aimed to compile information on kinase–substrate interactions and kinase-specific regulatory information and make this available via a new functionality embedded in PhosPhAt. Our approach involved systematic surveying of the literature for regulatory information on the members of the major kinase families in Arabidopsis thaliana, such as CDPKs, MPK(KK)s, AGC kinases and SnRKs, as well as individual kinases from other families. To date, we have researched more than 4450 kinase-related publications, which collectively contain information on about 289 kinases. Users can now query the PhosPhAt database not only for experimental and predicted phosphorylation sites of individual proteins, but also for known substrates for a given kinase or kinase family. Further developments include addition of new phosphorylation sites and visualization of clustered phosphorylation events, known as phosphorylation hotspots. |
format | Online Article Text |
id | pubmed-3531128 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-35311282013-03-07 PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt Zulawski, Monika Braginets, Rostyslav Schulze, Waltraud X. Nucleic Acids Res Articles Reversible phosphorylation is a key mechanism for regulating protein function. Thus it is of high interest to know which kinase can phosphorylate which proteins. Comprehensive information about phosphorylation sites in Arabidopsis proteins is hosted within the PhosPhAt database (http://phosphat.mpimp-golm.mpg.de). However, our knowledge of the kinases that phosphorylate those sites is dispersed throughout the literature and very difficult to access, particularly for investigators seeking to interpret large scale and high-throughput experiments. Therefore, we aimed to compile information on kinase–substrate interactions and kinase-specific regulatory information and make this available via a new functionality embedded in PhosPhAt. Our approach involved systematic surveying of the literature for regulatory information on the members of the major kinase families in Arabidopsis thaliana, such as CDPKs, MPK(KK)s, AGC kinases and SnRKs, as well as individual kinases from other families. To date, we have researched more than 4450 kinase-related publications, which collectively contain information on about 289 kinases. Users can now query the PhosPhAt database not only for experimental and predicted phosphorylation sites of individual proteins, but also for known substrates for a given kinase or kinase family. Further developments include addition of new phosphorylation sites and visualization of clustered phosphorylation events, known as phosphorylation hotspots. Oxford University Press 2013-01 2012-11-19 /pmc/articles/PMC3531128/ /pubmed/23172287 http://dx.doi.org/10.1093/nar/gks1081 Text en © The Author(s) 2012. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com. |
spellingShingle | Articles Zulawski, Monika Braginets, Rostyslav Schulze, Waltraud X. PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt |
title | PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt |
title_full | PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt |
title_fullStr | PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt |
title_full_unstemmed | PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt |
title_short | PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt |
title_sort | phosphat goes kinases—searchable protein kinase target information in the plant phosphorylation site database phosphat |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531128/ https://www.ncbi.nlm.nih.gov/pubmed/23172287 http://dx.doi.org/10.1093/nar/gks1081 |
work_keys_str_mv | AT zulawskimonika phosphatgoeskinasessearchableproteinkinasetargetinformationintheplantphosphorylationsitedatabasephosphat AT braginetsrostyslav phosphatgoeskinasessearchableproteinkinasetargetinformationintheplantphosphorylationsitedatabasephosphat AT schulzewaltraudx phosphatgoeskinasessearchableproteinkinasetargetinformationintheplantphosphorylationsitedatabasephosphat |